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1. Abstract 

My graduation project primarily encompasses two major sections: Pen Grip 

Detection and Agricultural Data Analysis. In the first section, I introduce the conception, 

discussion, and requirements documentation for the Pen Grip Detection project. The 

second section focuses on the Agricultural Data Analysis project, including the review 

of requirement documents, data set acquisition, and optimization. In this project, we 

employed one-hot encoding to transform qualitative data into quantitative data and 

successfully built a high-accuracy random forest multi-classification model for data 

analysis. In the third section, I revisited the Pen Grip Detection project, analyzed the 

previous group’s code, and made optimizations. Through data preprocessing and the 

construction of a binary classification model, we not only improved the code structure 

but also assisted team members in integrating the code modules. Ultimately, by 

demonstrating the code execution results, we enhanced the project’s presentation 

quality. Our work not only improved the project's accuracy and practicality but also 

fostered collaborative growth among team members. 

2. Keywords 

Data analysis, random forest model, one-hot vector encoding, data classification, 

Python, software requirements document, MediaPipe, OpenCV, computer vision, 

Camera reading 

3. Contents 

First of all, since this graduation project is divided into three parts, the following 

parts will also discuss the contents of the three parts separately in chronological order. 



For the first part, the main tasks of our group are to investigate project usability, 

write proposals, and write project requirements documents. Among them, the proposal 

mainly includes project goals and effect estimates, background and literature surveys, 

case studies, and sketch introductions. 

In proposal, we mainly give the following content: 

The main goal of the project is to develop a system for detecting and analyzing 

handwriting gestures using MediaPipe, an open source framework for building machine 

learning solutions. The scope of the project includes: 

 Implementing hand detection and tracking using MediaPipe's Hand Tracking 

solution to locate and track the position and movement of the hand. 

 Developing a model for recognizing different handwriting postures, such as 

pen grip variations and hand orientations 

 Integrating real-time feedback to provide users with guidance on improving 

their handwriting posture 

 Creating a user-friendly interface for visualizing and analyzing handwriting 

posture data. 

Handwriting posture plays a crucial role in the legibility, speed, and comfort of 

writing. Improper posture can lead to discomfort, fatigue, and even long-term health 

issues such as repetitive strain injuries(Blackburn, 2001). Various studies have been 

conducted in the field of handwriting analysis and ergonomics to understand the impact 

of posture on writing performance and to develop techniques for improving posture. 

After evaluating the prediction results and feasibility assessment, we looked for 



similar cases, such as MediaPipe's related gesture detection model and the application 

of other visual algorithms, and completed the Case Study: 

 Nagaraju (2022) used the MediaPipe framework to develop a digital 

handwriting recognition system that can detect hand gestures and analyze 

writing gestures. This provides the technical basis for this study. 

 Zhang et al. (2020) developed a real-time hand tracking system using the 

MediaPipe hand tracking module. The system can locate and track hand 

position and movement. This provides a methodological basis for this study. 

 Tao et al. (2018) developed an American Sign Language alphabet recognition 

system using convolutional neural networks and multiview data augmentation. 

Their research demonstrated hand gesture tracking and recognition 

capabilities using MediaPipe and machine learning algorithms. This provides 

an algorithmic basis for this study. 

After predicting and analyzing all possible outcomes, we wrote a simple 

deliverable presentation for subsequent judgment to other groups. The content is as 

follows: 

 A fully functional handwriting posture detection system implemented using 

MediaPipe. 

 Documentation and user guides explaining the system's functionality, usage 

instructions, and integration guidelines. 

 A research report summarizing the methodology, results, and findings of the 

project, including insights from the literature review and case study. 



 Source code and model weights for the developed system, released under an 

open-source license to encourage further research and development in the 

field. 

 The take-home deliverables will enable stakeholders, including researchers, 

educators, and developers, to understand, utilize, and build upon the outcomes 

of the project. 

The above describes the Proposal section of the first part of my project. In this 

phase, I actively participated in the conception and discussion of ideas. I utilized my 

knowledge of MediaPipe and data analysis to explain the project's principles and 

feasibility to my teammates, thereby helping them gain a deeper understanding of the 

project. 

The remaining section of the first part covers the preparation of the Software 

Requirements Document (SRS). Although the document was divided into sections and 

assigned to different team members, I was responsible for some of the crucial parts. 

Specifically, I handled the Product Perspective, including the System Interfaces, User 

Interfaces, Hardware Interfaces, Software Interfaces, Communications Interfaces, 

Memory Constraints, Operations, and Site Adaptation Requirements. In this role, I 

ensured that each of these sections was meticulously detailed, accurately reflecting the 

project's requirements and specifications. These sections can be primarily categorized 

into three main types: the minimum support parameters required by the software, the 

key interfaces of the software and their interconnections, and the network security 

issues involved. 



First, the minimum support parameters for the software include basic requirements 

regarding computer hardware. For example, one requirement states: "In 95% of cases, 

the response time during regular periods should not exceed 1.5 seconds, and during 

peak periods, it should not exceed 4 seconds." 

In the main interface section of the software, the content becomes more crucial as 

it encompasses all the functionalities of the final product and the relationships between 

each module. These interfaces include the MediaPipe Hand Tracking API, Camera 

Interface API, Voice module interface, Data preprocessing model, Posture coefficient 

acquisition model, Posture judgment model, and View model. I also created a diagram 

illustrating their relationships, which can be seen in the diagram below. These interfaces 

are interconnected and mutually influential, forming the optimal components of the 

software. For instance, in the Posture judgment model, I wrote: "Based on the key point 

information of the hand and the corresponding angle coefficient, determine whether the 

current posture meets the correct pen holding posture." 

 

Picture1: Schematic diagram of the relationship between various interfaces 



In addressing network security issues, my primary focus was on safeguarding user 

data and ensuring the security of user logins. In the context of software usage, 

protecting user privacy is paramount. Through analysis in these areas, the software can 

be made more robust. For instance, in the Encrypted Data Transmission section, I 

mentioned: "Network-transmitted data should undergo encryption to ensure data 

confidentiality, preventing eavesdropping, theft, or tampering during data collection, 

transmission, and processing. Business data should be encrypted during storage to 

ensure its inviolability." 

In the preparation of the Software Requirements Document, I applied the 

knowledge I acquired in software engineering. Both functional requirements (interface 

documents) and non-functional requirements (hardware requirements and network 

security requirements) were carefully considered and documented based on practical 

considerations. Additionally, I was responsible for the integration of the final 

requirements document. By crafting the table of contents, introduction, and summary 

sections, I enhanced the readability of the requirements document. 

In the first part of the project, we encountered several challenges. Since this stage 

only involves planning and conceptualizing the target software program, there may be 

ideas that are difficult to implement. To mitigate this situation, we needed to lower 

certain standards and conduct early investigations into the feasibility of these ideas. If 

some ideas prove unattainable, we needed to determine to what extent we could lower 

the standards to align with our vision for the software. Overall, as part of software 

design, the work in this stage is relatively straightforward, but it requires ensuring that 



the ideas are reasonable and objective, conducting practical investigations, and 

analyzing and evaluating the expected outcomes. 

The above represents all the work content of the first part, with the summary to be 

included in the Results section. Next, we will move on to the work content of the second 

part. 

In the second part, we were responsible for transitioning from an idea to a basic 

program. During this transition, we not only needed to thoroughly understand the 

requirement document provided by the previous group but also had to write relevant 

code based on the requirements to improve feasibility. In this part, we conducted 

evaluations of the results from the previous group, wrote the SDD (Software Design 

Description), analyzed user stories, and wrote some code. 

Firstly, in understanding the requirement document from the previous group, we 

thoroughly examined each interface provided by the previous group. We learned that 

this was primarily a software for recommending crops for cultivation. Users can input 

parameters of their land, such as pH value and soil humidity, to receive 

recommendations from the system regarding suitable crops. However, we encountered 

an issue: the requirement document did not include a dataset. As a data classification 

project, having a dataset is essential. Therefore, we began searching for available 

datasets on platforms like Kaggle. Eventually, we found a dataset containing various 

soil data and recommended crop types. 

After finding the dataset, we began the process of writing the SDD (Software 

Design Description). During this process, we created use-case diagrams, sequence 



diagrams, and class diagrams. Below is an example of one of the diagrams. Through 

these diagrams, we understood the relationships between various interfaces, provided 

some usage scenarios, and presented preliminary UI design sketches for the user 

interface. 

 

Picture2: Sequence Diagram of our Program 

After completing these preparatory tasks, we began the coding phase, which was 

divided into three main parts: the interactive UI design part, the button interaction 

processing part, the server setup part, the data preprocessing part, the model 

construction part, the model evaluation part, and the organization and integration part. 

My responsibilities included the data preprocessing part, the model construction part, 

and the model evaluation part. In fact, prior to this, I had never worked with data 

analysis. I had only studied some knowledge about convolutional neural networks and 

was familiar with definitions related to accuracy, recall rate, and F1 score in data 



statistics. 

Firstly, in the data preprocessing part, I learned and utilized one-hot encoding to 

support dataset preprocessing. One-hot encoding enables each state to have its own 

independent register bit. Based on one-hot encoding, qualitative data in the dataset can 

be converted into quantitative data. For example, for data indicating whether it belongs 

to region A or region B, it can be transformed into A-True: 1, B-True: 0, or A-True: 0, 

B-True: 1, converting A or B into computer-understandable 1 and 0, thereby improving 

the accuracy of the dataset. In addition to these preprocessing techniques, I also used 

SHAP to generate some analysis charts for dataset features. For example, the following 

chart illustrates an analysis of feature importance. 

 

Picture3: Processed data chart example 



 

Picture4: Feature importance histogram of the dataset 

In establishing the data classification model, I utilized the Random Forest model. 

I studied relevant knowledge about the Random Forest model online. It is a classifier 

consisting of multiple decision trees, and its output category is determined by the mode 

of the categories output by individual trees. With the Random Forest model, we can 

implement binary classification models or multi-classification models with multiple 

features. I used the scikit-learn API as the construction API for the Random Forest 

model. I divided the dataset into 80% for training and the remaining 20% for testing. 

Finally, through training on the training set, we obtained a Random Forest model that 

can be used to determine the optimal crop. 

During the model analysis stage, I not only used the test set for model testing to 

obtain accuracy, recall rate, and F1 score but also created a confusion matrix heatmap 



to visually present the accuracy of the model. Additionally, I analyzed the impact of 

various data on the final model evaluation and organized the results into an HTML file, 

which includes the heatmap and detailed analysis. The specific content is shown in the 

figure below: 

 

Picture5: Confusion matrix heat map of the model 



 

Picture6: Example diagram of the impact of each data on the final evaluation of 

the model 

Overall, my contributions in the second part are as described above. During the 

task, I planned the following workflow for myself: In the first week, I needed to find 

similar datasets, participate in project discussions, and learn about dataset analysis. In 

the second week, my tasks included learning about dataset analysis, finding a model 

that fits the current dataset, and writing the code to analyze the dataset. In the third 

week, I needed to continue learning about dataset analysis, write the code to analyze 

the dataset, and learn methods of data visualization. In the final week, my tasks involved 

testing the trained model using the test set, performing data visualization of the test 

results, and importing the model into the application. 

This part may have been the most challenging for me because all the knowledge 

involved here was completely new to me. It was my first time delving into data analysis, 



and I successfully applied it to the project's data. Additionally, I needed to understand 

the underlying principles of data preprocessing and analysis to avoid errors. In the final 

part of model evaluation, I also spent a lot of time learning about data visualization. I 

presented the impact of different data on the results in the most visible form through 

prominent charts. 

At the same time, I am still encouraging other members of the same group to 

complete their corresponding work. At work, I often supervise and supervise their work 

progress and whether the code they write can be integrated, because for a project, only 

part of the code is useless, and all the codes must be integrated., only when the whole 

can be put together and used can it be considered complete. During the subsequent 

supervision, I noticed that the servers responsible for other students had been 

successfully built and running normally, and the UI part was also going smoothly. I 

designed a good-looking UI and question system for the interface, which improved the 

quality of the entire project. 

In the third part, I returned to the project I worked on in the first part, which is 

about gesture detection. In this section, we needed to complete the entire project code, 

add additional features, conduct A/B testing for the software, and prepare for project 

presentation and demonstration. 

Firstly, upon regaining access to this project, it's essential to conduct an assessment 

of its current progress and functionalities. We need to evaluate and score each feature 

based on its completion status and quality. While the project has already implemented 

most of the functionalities by the time I regained access, a closer inspection reveals 



numerous existing issues that need to be addressed. 

The first problem is there's a lack of a unified interactive interface, which appears 

quite rudimentary and can only be accessed from the code interface. Secondly, frequent 

stuttering occurs during the reading of video frames, with the FPS dropping below 3 

during analysis. After a thorough analysis of the code, it's evident that this is due to the 

previous team's failure to utilize the continuous video frame encoding method. Within 

MediaPipe, there are two modes of frame retrieval: static frame retrieval and continuous 

frame retrieval. In the continuous frame analysis mode, the model predicts the next 

frame based on the previous frame, reducing the CPU usage of the program. 

Additionally, the model is restarted in every loop iteration, significantly reducing the 

analysis speed. To address this issue, we need to not only rewrite the code section 

related to OpenCV frame retrieval but also employ multithreading techniques to 

optimize the model's runtime speed. 

The third issue is that the model's predictions are not based on data analysis but 

rather on simplistic size comparisons. This approach results in very low accuracy 

because any data falling outside the specified range for correct pen-holding posture is 

deemed incorrect. Consequently, most of the predicted gestures are erroneous. To 

rectify this situation, we need to employ data analysis to build a classification model. 

Subsequently, the data obtained from the classification model should be integrated into 

the existing program, ensuring smooth operation. The fourth issue pertains to the 

complexity of the code. Due to the code's disorganized format and multiple versions, it 

requires meticulous scrutiny to confirm the purpose of each line of code and the sources 



of their libraries. 

I delegated the first, second and fourth issues to other team members and began 

tackling the third problem myself. I considered it the most challenging because it 

required not only preprocessing the dataset but also building a binary classification 

model. Furthermore, it entailed creating interfaces without disrupting the existing code 

structure to ensure smooth importation of feature data required for classification and 

exporting of result data post-classification. Despite the daunting nature of this task, its 

similarities to the work I completed in the second part prompted me to once again utilize 

one-hot encoding and the random forest model for this data analysis endeavor. 

The previous group captured and converted the data into a usable format. To 

preprocess this dataset, I first needed to understand it thoroughly. After multiple 

comparisons and inquiries with the previous team members, I finally grasped the 

meaning of each column in the dataset. Based on this understanding, I separated the 

feature columns from the result columns and applied one-hot encoding to them. 

However, since I only needed the model this time, I did not analyze each feature 

individually. With the preprocessed dataset, I could then begin training the classification 

model. 

With the experience from the previous task, I again utilized the random forest 

model for data analysis and classification. I learned from my previous mistakes and 

adjusted the thresholds for the trees in the random forest. I recorded the model's 

accuracy, recall, and F1 score, and generated a confusion matrix and ROC curve to 

evaluate the model's accuracy. After testing the model with the test set, we achieved an 



accuracy of 93%, a recall of 79%, and an F1 score of 86%. Overall, the results from 

this classification model were consistent with expected patterns. By comparing the 

confusion matrix and the ROC curve, I found that the ROC curve was very close to the 

ideal standard. Therefore, I concluded that this classification model was correctly built. 

Below are the confusion matrix and ROC curve for this model. 

 

Picture7: ROC curve of two-classification model of pen holding posture 



 

Picture8: Confusion matrix of two-classification model of pen holding posture 

However, after I completed my part, the teammate responsible for the fourth part 

encountered issues. He was unable to integrate the code because he did not understand 

how to import these parameters or use the main function to unify the data. Admittedly, 

I wasn't very skilled in this area either, so I decided to learn about it. After some time 

studying, I understood the usage of the main function and initialization methods. I 

modified parts of the code, incorporated the multithreading and continuous video frame 

processing code from the first part, and integrated the model into the analysis of the 

camera feed data. I also ensured the code was well-visualized, enabling the execution 

of all necessary preparations by simply running the main function. 

Lastly, for the overall project testing phase, we evaluated each component of the 

program against the requirements outlined in the documentation. For example, we 



verified that the frame rate for real-time video display met the requirement of 30 frames 

per second. Once we confirmed that each part met the necessary standards, we began 

preparing for the final thesis presentation. 

During the poster creation phase, I provided the main images and key technical 

descriptions for my teammates. Prior to the presentation, I listed the important sections 

of the code and explained the corresponding concepts to my team members. This 

included the significance and use of the ROC curve, the principles of the random forest 

model, and how to call its API. This ensured that each team member could discuss a 

specific part of the program, thereby ensuring a smooth project presentation. 

In this phase, I consolidated the new knowledge I gained in data preprocessing and 

analysis, and I learned more about constructing binary classification models. I 

successfully completed the tasks of data preprocessing and analysis and assisted a 

teammate with code integration. Compared to the previous group's program, our 

classification model's accuracy significantly improved to 93%, and the frame rate for 

analysis increased to meet real-time standards. I also acquired a deeper understanding 

of how to connect interfaces and applied this knowledge in practice. 

Although the project's completion level is very high, we identified a few issues. 

For example, Professor Pinata noted that the font size of the results display was small 

and hard to read for many people. This feedback was valuable, and we immediately 

adjusted the font size and added different colors for different results—green for correct 

results and red for incorrect ones. Additionally, we discussed how to implement this 

software in real-world applications. One challenge is the shakiness of the hand skeleton 



detected by MediaPipe, which can cause false readings. After internal discussions, we 

decided that if all prediction results over a short period are incorrect, the hand posture 

is likely incorrect. Conversely, if any frame in that period shows a correct prediction, 

the posture is probably correct, despite some detection shakiness. 

Furthermore, we analyzed potential issues and corresponding solutions. Since the 

dataset consists of photos of male hands aged 20-23, there may be analysis errors due 

to gender and age differences. To mitigate this, we should convert distances to ratios or 

expand the dataset to include samples from various ages and genders. In summary, 

while the project is highly complete, there are still areas for improvement. 

4. Literature Review 

PART-1: Handwriting posture plays a crucial role in the legibility, speed, and 

comfort of writing. Improper posture can lead to discomfort, fatigue, and even long-

term health issues such as repetitive strain injuries (Blackburn, 2001). Various studies 

have been conducted in the field of handwriting analysis and ergonomics to understand 

the impact of posture on writing performance and to develop techniques for improving 

posture. 

Part-2: 

In data analysis and machine learning projects, preprocessing the dataset is crucial. 

Common preprocessing methods include handling missing values, data standardization, 

feature selection, and feature engineering. Among these, one-hot encoding is a 

commonly used technique, especially for handling categorical variables. By encoding 

categorical variables into binary form, models can better understand and process these 



variables. When preparing data for model training, one-hot encoding can effectively 

improve the performance and accuracy of the model. 

In research on machine learning models for crop recommendation systems, 

common algorithms include random forest, support vector machine (SVM), and neural 

networks. These algorithms demonstrate wide applicability and effectiveness in 

agricultural decision-making. Random forest is an ensemble learning method that can 

handle large amounts of features and samples, showing excellent performance in 

dealing with nonlinear relationships and high-dimensional data. SVM performs well in 

classification and regression tasks, especially for nonlinear classification problems. 

Neural networks are powerful models capable of learning complex patterns and 

relationships, although they may require more computational resources and time for 

training and tuning. 

Data visualization plays a crucial role in data analysis, aiding in a more intuitive 

understanding and interpretation of data. Common data visualization techniques 

include confusion matrix analysis, heatmap visualization, and feature importance plots. 

Confusion matrices provide a clear representation of the model's performance across 

different categories, aiding in the assessment of model performance. Heatmap analysis 

visually presents the relationships and patterns among data, facilitating the discovery 

of hidden trends and patterns. Feature importance plots help determine which features 

have the greatest impact on the model's prediction results, guiding feature selection and 

model optimization. 

Part-3: 



Achieving real-time processing is a primary challenge in gesture detection. The 

literature emphasizes the importance of optimizing video frame analysis to maintain 

high frame rates, essential for smooth user experiences. Techniques such as 

multithreading and efficient frame encoding are crucial. Studies have shown that 

leveraging continuous frame analysis can significantly enhance performance by 

predicting subsequent frames based on previous ones, thereby reducing the 

computational burden (Zhang et al., 2021). 

Another critical challenge is ensuring high accuracy and robustness of the 

detection models. Inadequate data preprocessing and simplistic feature extraction 

methods can lead to poor performance. Advanced data preprocessing techniques, 

including one-hot encoding and comprehensive feature selection, are vital for 

improving model accuracy (Han et al., 2020). Additionally, employing sophisticated 

classification models like Random Forests can enhance prediction accuracy and 

interpretability (Breiman, 2001). 

Gesture detection systems have significant applications in educational tools and 

interactive user interfaces. These systems can assist in teaching and learning by 

providing real-time feedback on hand postures and movements. The implementation 

discussed in the project highlights the integration of a gesture detection model with an 

educational tool for evaluating pen-holding postures. The use of Random Forests for 

classification and the optimization of frame retrieval processes were key to achieving 

high accuracy and real-time performance. 

5. Results& Conclusions 



Part-1: Pen Grip Pose Detection based on MideaPipe 

During the initial phase of the project, my responsibilities mainly focused on 

proposing and explaining various ideas, writing the interface part of the requirement 

document, and processing file formats. In this stage, I actively applied the knowledge I 

had acquired and drafted a comprehensive project proposal. Through in-depth 

discussions with team members, I proposed multiple solutions. I also continuously 

refined the requirement document using the skills I had acquired from previous courses. 

Throughout this process, I continued to learn new knowledge, including delving into 

the detailed processes of case analysis. 

PART-2: AI-Aided Crop Recommendation Software Requirement Specification 

In the second phase of our project, we transitioned from conceptualization to 

implementation, meticulously analyzing the previous group's requirements and crafting 

code to realize these objectives. Despite encountering challenges such as the absence 

of a dataset initially, we persevered, sourcing pertinent data and delineating our 

approach through the Software Design Description (SDD). Subsequent to preparatory 

tasks, we delved into coding, with my responsibilities spanning data preprocessing, 

model construction, and evaluation, realms entirely new to me. Through diligent 

learning and application, I contributed substantively to the project's progression, 

culminating in the establishment of a robust model for crop recommendation. 

Navigating through this phase was undoubtedly challenging, given the novelty of 

the terrain. However, by diligently acquainting myself with data analysis principles and 

visualization techniques, I successfully navigated uncharted waters, contributing 



substantively to the project's advancement. Furthermore, my role extended beyond 

individual contributions; I assumed a supervisory role, ensuring cohesion amongst team 

members and overseeing code integration. Through diligent oversight, I ensured the 

smooth operation of servers and the seamless progression of UI development, 

enhancing the project's overall quality. 

PART-3: Pen Grip Pose Detection based on MideaPipe 

In the third phase of the project, I returned to the gesture detection project from 

the first phase, completing the entire code implementation, adding extra features, 

conducting A/B testing, and preparing for the project presentation and demonstration. 

Initially, we assessed the project's current progress and functionality, rating the quality 

and completion status of each feature. While most functionalities had been 

implemented, there were several issues that needed to be addressed, such as the lack of 

a unified user interface, frequent lag during video frame reading, and low accuracy in 

model predictions. By redesigning the code, employing multithreading techniques, and 

improving prediction methods, we significantly enhanced the project's performance and 

accuracy. 

In addressing these issues, I was responsible for data preprocessing and building 

the classification model. Using one-hot encoding and the random forest model, I 

successfully constructed a classification model with an accuracy of 93%. Additionally, 

I assisted my teammates in integrating the code, ensuring the implementation of 

multithreading and continuous video frame processing, which improved the real-time 

analysis capabilities. During the project testing phase, we verified the performance of 



each component and prepared for the project presentation. Although the overall project 

completion was high, we still identified and resolved some issues, such as adjusting the 

font size and color of the result display. We also discussed the practical application of 

gesture detection and potential improvement measures. 

Overall, this phase not only reinforced my new knowledge in data preprocessing 

and analysis but also enhanced my understanding and application of binary 

classification model construction and interface integration. 
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7. Appendix 

Program link: 

 Part-1: https://github.com/kermit0125/CPS4951_Part1 

 Part-2: https://github.com/CapstoneGroup09-1/DataSet_Analysis  

 Part-3: https://github.com/kermit0125/Pen-Grip-Pose-Detection-based-on-

MideaPipe  

Introduction of API: 

 Pandas: Pandas is one of the primary tools in Python for data manipulation 

and analysis. It provides efficient data structures and functions, especially 

suitable for dealing with structured data. The core data structure in Pandas is 



DataFrame, which is similar to an Excel spreadsheet but more flexible and 

powerful. With Pandas, users can perform operations such as data cleaning, 

transformation, analysis, and visualization. This project is mainly used for the 

data cleaning part of data preprocessing. 

 Scikit-learn:  

Scikit-learn is a Python library for machine learning, providing a wide range 

of machine learning algorithms and tools, including classification, regression, 

clustering, and dimensionality reduction. It is designed to be simple and easy 

to use, suitable for both beginners and experts in machine learning. Scikit-

learn comes with many classical machine learning algorithms built-in and 

provides rich documentation and examples for users to learn and utilize. This 

project is mainly used for the scatter plot generation part of data analysis. 

 OpenCV:  

OpenCV is an open-source computer vision library that provides a rich set of 

image processing and computer vision algorithms for tasks such as image 

processing, object detection, feature extraction, and image recognition. It 

supports multiple programming languages, including C++, Python, and Java, 

and is cross-platform, running on Windows, Linux, macOS, and other 

operating systems. OpenCV offers a wide range of image processing and 

computer vision algorithms, along with support for hardware acceleration and 

parallel computing. This project is mainly used to read the camera. 

 MediaPipe:  



MediaPipe is an open-source framework for building machine learning-based 

media processing pipelines, aimed at simplifying the development and 

deployment of media processing tasks. It provides a collection of pre-trained 

machine learning models and components for processing video, audio, and 

image data. MediaPipe supports real-time processing and offers an easy-to-

use Python API for users to build custom media processing applications. This 

project is mainly used for picture processing and skeleton prediction. 

Data collection mechanism 

1. First step - Determine data needs: 

Determine the types, quantities, and formats of data needed for the 

project. This will help you identify which datasets to download from 

Kaggle and what kind of data to capture yourself. 

2. Second step – Photograph or find data: 

In the second part, the data set is a relevant data set retrieved on kaggle. 

In the third part, the data set is shot by the project team from multiple 

angles and handed over to MediaPipe to read and analyze the data table. 

3. Third Step - Create the data directory structure: 

Create a clear data directory structure, including folders for storing 

Kaggle data and your own captured data. Add documentation or 

descriptions to the directory structure describing the contents and 

purpose of each dataset. 

Code written by myself 



Part-2:  

Code of main code 

import numpy as np 

import pandas as pd 

import joblib 

 

def predict_crop(N, P, K, temperature, humidity, ph, rainfall): 

    # 加载模型 
    model = joblib.load('random_forest_model.pkl') 

    # 加载标签编码器 
    encoder = joblib.load('label_encoder.pkl') 

 

    # 构建输入数据 
    data = np.array([[N, P, K, temperature, humidity, ph, rainfall]]) 

    # 进行预测 
    prediction = model.predict(data) 

    # 获取预测结果的标签 
    predicted_label = encoder.inverse_transform(prediction)[0] 

 

    return predicted_label 

 

def main(): 

    print("请输入以下参数以预测作物类型:") 

    N = float(input("土壤中的氮含量: ")) 

    P = float(input("土壤中的磷含量: ")) 

    K = float(input("土壤中的钾含量: ")) 

    temperature = float(input("气温（摄氏度）: ")) 

    humidity = float(input("湿度（百分比）: ")) 

    ph = float(input("土壤的 pH值: ")) 

    rainfall = float(input("降雨量（毫米）: ")) 
 

    predicted_label = predict_crop(N, P, K, temperature, humidity, ph, 

rainfall) 

    print(f"预测的作物类型为: {predicted_label}") 
 

if __name__ == "__main__": 

    main() 

 

Code of Data Processing 

import warnings 

warnings.filterwarnings("ignore") 



 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn import model_selection 

from sklearn import preprocessing 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import confusion_matrix 

import itertools 

import joblib 

 

df = pd.read_csv('Crop_recommendation.csv') 

 

# 分离标签与特征值 

x = df.drop(['label'], axis=1) # 特征值 

Y = df['label'] # 标签 
labels = df['label'].tolist() 

encode = preprocessing.LabelEncoder() 

y = encode.fit_transform(Y) # 标签编码 
print(y) 

 

# 分离测试集以及数据集 
x_train, x_test, y_train, y_test = model_selection.train_test_split(x, 

y, test_size=0.2, random_state=10) 

 

# 构建随机森林模型 
model = RandomForestClassifier(max_depth=5, n_estimators=100, 

random_state=5) 

model.fit(x_train, y_train) 

 

# 特征重要性分析 
model.feature_importances_ 

feature_names = x_test.columns 

feature_importances = model.feature_importances_ 

indices = np.argsort(feature_importances)[::-1] 

plt.figure() 

plt.title("Feature Importance") 

plt.bar(range(len(feature_importances)), feature_importances[indices], 

color='b') 

plt.xticks(range(len(feature_importances)), 

np.array(feature_names)[indices], color='b', rotation=90) 

plt.savefig('my_plot.png') 

 

# 预测测试集 



y_pred = model.predict(x_test) # 定性数据 

y_pred_quant = model.predict_proba(x_test) # 定量数据 
 

# 混淆矩阵 
confusion_matrix_model = confusion_matrix(y_test, y_pred) 

 

# 混淆矩阵热力图绘制函数 
def cnf_matrix_plotter(cm, classes): 

    plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) # 更换颜

色映射为蓝色 
    plt.title('Confusion Matrix') 

    plt.colorbar() 

    tick_marks = np.arange(len(classes)) 

    plt.xticks(tick_marks, classes, rotation=45) 

    plt.yticks(tick_marks, classes) 

 

    # 标准化数字格式，四舍五入到整数 
    fmt = 'd' 

    thresh = cm.max() / 2. 

    for i, j in itertools.product(range(cm.shape[0]), 

range(cm.shape[1])): 

        plt.text(j, i, format(cm[i, j], fmt), 

horizontalalignment="center", 

                 color="white" if cm[i, j] > thresh else "black") 

 

    plt.tight_layout() 

    plt.ylabel('True Label') 

    plt.xlabel('Predicted Label') 

    plt.show() 

    plt.savefig('Confusion_matrix_heat_map.png') 

 

# 调用方法绘制混淆矩阵热力图 
cnf_matrix_plotter(confusion_matrix_model, 

['rice','maize','chickpea','kidneybeans','pigeonpeas','mothbeans','mung

bean','blackgram','lentil', 

'pomegranate','banana','mango','grapes','watermelon','muskmelon','apple

','orange','papaya','coconut','cotton','jute','coffee','']) 

 

# 将模型保存为.pkl 文件 
joblib.dump(model, 'random_forest_model.pkl') 

 

# 创建并拟合标签编码器 
encoder = preprocessing.LabelEncoder() 

encoder.fit(labels)  # labels 是你的标签数据 



# 将标签编码器保存为.pkl 文件 
joblib.dump(encoder, 'label_encoder.pkl') 

Part-3:  

Code of Data Processing 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import confusion_matrix, precision_score, 

recall_score, f1_score, roc_curve, auc 

import seaborn as sns 

import joblib 

 

df=pd.read_csv('ProcessedData.csv') 

X = df.drop('Gesture', axis=1)   # 特征列 

y = df['Gesture']               # 标签列 
 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.2, random_state=10) # 划分测试集和训练集，测试集 20%，训练集 80% 
 

model = RandomForestClassifier(max_depth=5, n_estimators=100, 

random_state=5)  # 100棵决策树，最大深度 5，随机数种子 
model.fit(X_train, y_train) 

 

# 计算预测结果和预测概率 
y_predict = model.predict(X_test) 

y_predict_proba = model.predict_proba(X_test) 

 

# 计算混淆矩阵 
cm = confusion_matrix(y_test, y_predict) 

print("Confusion Matrix:") 

print(cm) 

 

# 计算 Precision、Recall、F1-Score 
precision = precision_score(y_test, y_predict) 

recall = recall_score(y_test, y_predict) 

f1 = f1_score(y_test, y_predict) 

print("\nPrecision:", precision) 

print("Recall:", recall) 

print("F1-Score:", f1) 

 



# 绘制混淆矩阵的热图 
plt.figure(figsize=(8, 6)) 

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False) 

plt.xlabel('Predicted Labels') 

plt.ylabel('True Labels') 

plt.title('Confusion Matrix') 

plt.show() 

# 保存混淆矩阵图像 
plt.savefig('Confusion_Matrix.png') 

 

# 计算 ROC 曲线 
fpr, tpr, thresholds = roc_curve(y_test, y_predict_proba[:, 1]) 

roc_auc = auc(fpr, tpr) 

 

# 绘制 ROC 曲线 
plt.figure(figsize=(8, 6)) 

plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area 

= %0.2f)' % roc_auc) 

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('Receiver Operating Characteristic (ROC) Curve') 

plt.legend(loc="lower right") 

plt.show() 

# 保存混淆矩阵图像 
plt.savefig('ROC.png') 

 

# 将模型保存到文件 
joblib.dump(model, 'random_forest_model.pkl') 

Code of Data Processing 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

 #pip install scikit-learn导入 sklearn包 

from sklearn.model_selection import train_test_split        #导入划分训练

测试集功能的 APA 

from sklearn.ensemble import RandomForestClassifier         #导入随机森林

模型的 APA 

from sklearn.tree import export_graphviz                    #导入森林模型

Tree可视化工具 
from IPython.display import Image 



import graphviz 

 

df = pd.read_csv('ProcessedData.csv') 

 

X = df.drop('Gesture',axis=1)   #特征列 

y = df['Gesture']               #标签列 
 

X_train,X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=10) #划分测试集和训练集，测试集 80%，训练集 20% 
 

model = RandomForestClassifier(max_depth=5, n_estimators=100, 

random_state=5)           #100棵决策树，最大深度 5，随机数种子 
model.fit(X_train, y_train) 

 

estimator = model.estimators_[20] 

print(estimator) 

 

feature_names =X_train.columns 

y_train_str =y_train.astype('str') 

y_train_str[y_train_str=='0'] = 'Wrong' 

y_train_str[y_train_str=='1'] = 'Correct' 

y_train_str=y_train_str.values 

 

import os 

os.environ["PATH"] += os.pathsep + 'C:/Program Files/Graphviz/bin' 

 

dot_file = 'tree.dot' 

export_graphviz(estimator, out_file=dot_file, 

                feature_names=feature_names, 

                class_names=y_train_str, 

                rounded=True, proportion=True, 

                label='root', 

                precision=2, filled=True) 

 

graph = graphviz.Source.from_file(dot_file) 

graph.render(filename='tree', format='png', view=True) 
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