

PART-1: Pen Grip Pose Detection based on MideaPipe

PART-2: AI-Aided Crop Recommendation Software Requirement Specification

PART-3: Pen Grip Pose Detection based on MideaPipe

In Partial Fulfillment of the Requirements

for the Bachelor of Science in Computer Science

by

Keming Xing

1162866

June, 2024

Listing
1. Abstract ... 3
2. Keywords ... 3
3. Contents ... 3
4. Literature Review ... 21
5. Results& Conclusions ... 23
6. References .. 26
7. Appendix.. 27

Program link: .. 27
Introduction of API: .. 27
Data collection mechanism ... 29
Code written by myself ... 29

Part-2: .. 30
Part-3: .. 33

8. Acknowledgements .. 36

1. Abstract

My graduation project primarily encompasses two major sections: Pen Grip

Detection and Agricultural Data Analysis. In the first section, I introduce the conception,

discussion, and requirements documentation for the Pen Grip Detection project. The

second section focuses on the Agricultural Data Analysis project, including the review

of requirement documents, data set acquisition, and optimization. In this project, we

employed one-hot encoding to transform qualitative data into quantitative data and

successfully built a high-accuracy random forest multi-classification model for data

analysis. In the third section, I revisited the Pen Grip Detection project, analyzed the

previous group’s code, and made optimizations. Through data preprocessing and the

construction of a binary classification model, we not only improved the code structure

but also assisted team members in integrating the code modules. Ultimately, by

demonstrating the code execution results, we enhanced the project’s presentation

quality. Our work not only improved the project's accuracy and practicality but also

fostered collaborative growth among team members.

2. Keywords

Data analysis, random forest model, one-hot vector encoding, data classification,

Python, software requirements document, MediaPipe, OpenCV, computer vision,

Camera reading

3. Contents

First of all, since this graduation project is divided into three parts, the following

parts will also discuss the contents of the three parts separately in chronological order.

For the first part, the main tasks of our group are to investigate project usability,

write proposals, and write project requirements documents. Among them, the proposal

mainly includes project goals and effect estimates, background and literature surveys,

case studies, and sketch introductions.

In proposal, we mainly give the following content:

The main goal of the project is to develop a system for detecting and analyzing

handwriting gestures using MediaPipe, an open source framework for building machine

learning solutions. The scope of the project includes:

 Implementing hand detection and tracking using MediaPipe's Hand Tracking

solution to locate and track the position and movement of the hand.

 Developing a model for recognizing different handwriting postures, such as

pen grip variations and hand orientations

 Integrating real-time feedback to provide users with guidance on improving

their handwriting posture

 Creating a user-friendly interface for visualizing and analyzing handwriting

posture data.

Handwriting posture plays a crucial role in the legibility, speed, and comfort of

writing. Improper posture can lead to discomfort, fatigue, and even long-term health

issues such as repetitive strain injuries(Blackburn, 2001). Various studies have been

conducted in the field of handwriting analysis and ergonomics to understand the impact

of posture on writing performance and to develop techniques for improving posture.

After evaluating the prediction results and feasibility assessment, we looked for

similar cases, such as MediaPipe's related gesture detection model and the application

of other visual algorithms, and completed the Case Study:

 Nagaraju (2022) used the MediaPipe framework to develop a digital

handwriting recognition system that can detect hand gestures and analyze

writing gestures. This provides the technical basis for this study.

 Zhang et al. (2020) developed a real-time hand tracking system using the

MediaPipe hand tracking module. The system can locate and track hand

position and movement. This provides a methodological basis for this study.

 Tao et al. (2018) developed an American Sign Language alphabet recognition

system using convolutional neural networks and multiview data augmentation.

Their research demonstrated hand gesture tracking and recognition

capabilities using MediaPipe and machine learning algorithms. This provides

an algorithmic basis for this study.

After predicting and analyzing all possible outcomes, we wrote a simple

deliverable presentation for subsequent judgment to other groups. The content is as

follows:

 A fully functional handwriting posture detection system implemented using

MediaPipe.

 Documentation and user guides explaining the system's functionality, usage

instructions, and integration guidelines.

 A research report summarizing the methodology, results, and findings of the

project, including insights from the literature review and case study.

 Source code and model weights for the developed system, released under an

open-source license to encourage further research and development in the

field.

 The take-home deliverables will enable stakeholders, including researchers,

educators, and developers, to understand, utilize, and build upon the outcomes

of the project.

The above describes the Proposal section of the first part of my project. In this

phase, I actively participated in the conception and discussion of ideas. I utilized my

knowledge of MediaPipe and data analysis to explain the project's principles and

feasibility to my teammates, thereby helping them gain a deeper understanding of the

project.

The remaining section of the first part covers the preparation of the Software

Requirements Document (SRS). Although the document was divided into sections and

assigned to different team members, I was responsible for some of the crucial parts.

Specifically, I handled the Product Perspective, including the System Interfaces, User

Interfaces, Hardware Interfaces, Software Interfaces, Communications Interfaces,

Memory Constraints, Operations, and Site Adaptation Requirements. In this role, I

ensured that each of these sections was meticulously detailed, accurately reflecting the

project's requirements and specifications. These sections can be primarily categorized

into three main types: the minimum support parameters required by the software, the

key interfaces of the software and their interconnections, and the network security

issues involved.

First, the minimum support parameters for the software include basic requirements

regarding computer hardware. For example, one requirement states: "In 95% of cases,

the response time during regular periods should not exceed 1.5 seconds, and during

peak periods, it should not exceed 4 seconds."

In the main interface section of the software, the content becomes more crucial as

it encompasses all the functionalities of the final product and the relationships between

each module. These interfaces include the MediaPipe Hand Tracking API, Camera

Interface API, Voice module interface, Data preprocessing model, Posture coefficient

acquisition model, Posture judgment model, and View model. I also created a diagram

illustrating their relationships, which can be seen in the diagram below. These interfaces

are interconnected and mutually influential, forming the optimal components of the

software. For instance, in the Posture judgment model, I wrote: "Based on the key point

information of the hand and the corresponding angle coefficient, determine whether the

current posture meets the correct pen holding posture."

Picture1: Schematic diagram of the relationship between various interfaces

In addressing network security issues, my primary focus was on safeguarding user

data and ensuring the security of user logins. In the context of software usage,

protecting user privacy is paramount. Through analysis in these areas, the software can

be made more robust. For instance, in the Encrypted Data Transmission section, I

mentioned: "Network-transmitted data should undergo encryption to ensure data

confidentiality, preventing eavesdropping, theft, or tampering during data collection,

transmission, and processing. Business data should be encrypted during storage to

ensure its inviolability."

In the preparation of the Software Requirements Document, I applied the

knowledge I acquired in software engineering. Both functional requirements (interface

documents) and non-functional requirements (hardware requirements and network

security requirements) were carefully considered and documented based on practical

considerations. Additionally, I was responsible for the integration of the final

requirements document. By crafting the table of contents, introduction, and summary

sections, I enhanced the readability of the requirements document.

In the first part of the project, we encountered several challenges. Since this stage

only involves planning and conceptualizing the target software program, there may be

ideas that are difficult to implement. To mitigate this situation, we needed to lower

certain standards and conduct early investigations into the feasibility of these ideas. If

some ideas prove unattainable, we needed to determine to what extent we could lower

the standards to align with our vision for the software. Overall, as part of software

design, the work in this stage is relatively straightforward, but it requires ensuring that

the ideas are reasonable and objective, conducting practical investigations, and

analyzing and evaluating the expected outcomes.

The above represents all the work content of the first part, with the summary to be

included in the Results section. Next, we will move on to the work content of the second

part.

In the second part, we were responsible for transitioning from an idea to a basic

program. During this transition, we not only needed to thoroughly understand the

requirement document provided by the previous group but also had to write relevant

code based on the requirements to improve feasibility. In this part, we conducted

evaluations of the results from the previous group, wrote the SDD (Software Design

Description), analyzed user stories, and wrote some code.

Firstly, in understanding the requirement document from the previous group, we

thoroughly examined each interface provided by the previous group. We learned that

this was primarily a software for recommending crops for cultivation. Users can input

parameters of their land, such as pH value and soil humidity, to receive

recommendations from the system regarding suitable crops. However, we encountered

an issue: the requirement document did not include a dataset. As a data classification

project, having a dataset is essential. Therefore, we began searching for available

datasets on platforms like Kaggle. Eventually, we found a dataset containing various

soil data and recommended crop types.

After finding the dataset, we began the process of writing the SDD (Software

Design Description). During this process, we created use-case diagrams, sequence

diagrams, and class diagrams. Below is an example of one of the diagrams. Through

these diagrams, we understood the relationships between various interfaces, provided

some usage scenarios, and presented preliminary UI design sketches for the user

interface.

Picture2: Sequence Diagram of our Program

After completing these preparatory tasks, we began the coding phase, which was

divided into three main parts: the interactive UI design part, the button interaction

processing part, the server setup part, the data preprocessing part, the model

construction part, the model evaluation part, and the organization and integration part.

My responsibilities included the data preprocessing part, the model construction part,

and the model evaluation part. In fact, prior to this, I had never worked with data

analysis. I had only studied some knowledge about convolutional neural networks and

was familiar with definitions related to accuracy, recall rate, and F1 score in data

statistics.

Firstly, in the data preprocessing part, I learned and utilized one-hot encoding to

support dataset preprocessing. One-hot encoding enables each state to have its own

independent register bit. Based on one-hot encoding, qualitative data in the dataset can

be converted into quantitative data. For example, for data indicating whether it belongs

to region A or region B, it can be transformed into A-True: 1, B-True: 0, or A-True: 0,

B-True: 1, converting A or B into computer-understandable 1 and 0, thereby improving

the accuracy of the dataset. In addition to these preprocessing techniques, I also used

SHAP to generate some analysis charts for dataset features. For example, the following

chart illustrates an analysis of feature importance.

Picture3: Processed data chart example

Picture4: Feature importance histogram of the dataset

In establishing the data classification model, I utilized the Random Forest model.

I studied relevant knowledge about the Random Forest model online. It is a classifier

consisting of multiple decision trees, and its output category is determined by the mode

of the categories output by individual trees. With the Random Forest model, we can

implement binary classification models or multi-classification models with multiple

features. I used the scikit-learn API as the construction API for the Random Forest

model. I divided the dataset into 80% for training and the remaining 20% for testing.

Finally, through training on the training set, we obtained a Random Forest model that

can be used to determine the optimal crop.

During the model analysis stage, I not only used the test set for model testing to

obtain accuracy, recall rate, and F1 score but also created a confusion matrix heatmap

to visually present the accuracy of the model. Additionally, I analyzed the impact of

various data on the final model evaluation and organized the results into an HTML file,

which includes the heatmap and detailed analysis. The specific content is shown in the

figure below:

Picture5: Confusion matrix heat map of the model

Picture6: Example diagram of the impact of each data on the final evaluation of

the model

Overall, my contributions in the second part are as described above. During the

task, I planned the following workflow for myself: In the first week, I needed to find

similar datasets, participate in project discussions, and learn about dataset analysis. In

the second week, my tasks included learning about dataset analysis, finding a model

that fits the current dataset, and writing the code to analyze the dataset. In the third

week, I needed to continue learning about dataset analysis, write the code to analyze

the dataset, and learn methods of data visualization. In the final week, my tasks involved

testing the trained model using the test set, performing data visualization of the test

results, and importing the model into the application.

This part may have been the most challenging for me because all the knowledge

involved here was completely new to me. It was my first time delving into data analysis,

and I successfully applied it to the project's data. Additionally, I needed to understand

the underlying principles of data preprocessing and analysis to avoid errors. In the final

part of model evaluation, I also spent a lot of time learning about data visualization. I

presented the impact of different data on the results in the most visible form through

prominent charts.

At the same time, I am still encouraging other members of the same group to

complete their corresponding work. At work, I often supervise and supervise their work

progress and whether the code they write can be integrated, because for a project, only

part of the code is useless, and all the codes must be integrated., only when the whole

can be put together and used can it be considered complete. During the subsequent

supervision, I noticed that the servers responsible for other students had been

successfully built and running normally, and the UI part was also going smoothly. I

designed a good-looking UI and question system for the interface, which improved the

quality of the entire project.

In the third part, I returned to the project I worked on in the first part, which is

about gesture detection. In this section, we needed to complete the entire project code,

add additional features, conduct A/B testing for the software, and prepare for project

presentation and demonstration.

Firstly, upon regaining access to this project, it's essential to conduct an assessment

of its current progress and functionalities. We need to evaluate and score each feature

based on its completion status and quality. While the project has already implemented

most of the functionalities by the time I regained access, a closer inspection reveals

numerous existing issues that need to be addressed.

The first problem is there's a lack of a unified interactive interface, which appears

quite rudimentary and can only be accessed from the code interface. Secondly, frequent

stuttering occurs during the reading of video frames, with the FPS dropping below 3

during analysis. After a thorough analysis of the code, it's evident that this is due to the

previous team's failure to utilize the continuous video frame encoding method. Within

MediaPipe, there are two modes of frame retrieval: static frame retrieval and continuous

frame retrieval. In the continuous frame analysis mode, the model predicts the next

frame based on the previous frame, reducing the CPU usage of the program.

Additionally, the model is restarted in every loop iteration, significantly reducing the

analysis speed. To address this issue, we need to not only rewrite the code section

related to OpenCV frame retrieval but also employ multithreading techniques to

optimize the model's runtime speed.

The third issue is that the model's predictions are not based on data analysis but

rather on simplistic size comparisons. This approach results in very low accuracy

because any data falling outside the specified range for correct pen-holding posture is

deemed incorrect. Consequently, most of the predicted gestures are erroneous. To

rectify this situation, we need to employ data analysis to build a classification model.

Subsequently, the data obtained from the classification model should be integrated into

the existing program, ensuring smooth operation. The fourth issue pertains to the

complexity of the code. Due to the code's disorganized format and multiple versions, it

requires meticulous scrutiny to confirm the purpose of each line of code and the sources

of their libraries.

I delegated the first, second and fourth issues to other team members and began

tackling the third problem myself. I considered it the most challenging because it

required not only preprocessing the dataset but also building a binary classification

model. Furthermore, it entailed creating interfaces without disrupting the existing code

structure to ensure smooth importation of feature data required for classification and

exporting of result data post-classification. Despite the daunting nature of this task, its

similarities to the work I completed in the second part prompted me to once again utilize

one-hot encoding and the random forest model for this data analysis endeavor.

The previous group captured and converted the data into a usable format. To

preprocess this dataset, I first needed to understand it thoroughly. After multiple

comparisons and inquiries with the previous team members, I finally grasped the

meaning of each column in the dataset. Based on this understanding, I separated the

feature columns from the result columns and applied one-hot encoding to them.

However, since I only needed the model this time, I did not analyze each feature

individually. With the preprocessed dataset, I could then begin training the classification

model.

With the experience from the previous task, I again utilized the random forest

model for data analysis and classification. I learned from my previous mistakes and

adjusted the thresholds for the trees in the random forest. I recorded the model's

accuracy, recall, and F1 score, and generated a confusion matrix and ROC curve to

evaluate the model's accuracy. After testing the model with the test set, we achieved an

accuracy of 93%, a recall of 79%, and an F1 score of 86%. Overall, the results from

this classification model were consistent with expected patterns. By comparing the

confusion matrix and the ROC curve, I found that the ROC curve was very close to the

ideal standard. Therefore, I concluded that this classification model was correctly built.

Below are the confusion matrix and ROC curve for this model.

Picture7: ROC curve of two-classification model of pen holding posture

Picture8: Confusion matrix of two-classification model of pen holding posture

However, after I completed my part, the teammate responsible for the fourth part

encountered issues. He was unable to integrate the code because he did not understand

how to import these parameters or use the main function to unify the data. Admittedly,

I wasn't very skilled in this area either, so I decided to learn about it. After some time

studying, I understood the usage of the main function and initialization methods. I

modified parts of the code, incorporated the multithreading and continuous video frame

processing code from the first part, and integrated the model into the analysis of the

camera feed data. I also ensured the code was well-visualized, enabling the execution

of all necessary preparations by simply running the main function.

Lastly, for the overall project testing phase, we evaluated each component of the

program against the requirements outlined in the documentation. For example, we

verified that the frame rate for real-time video display met the requirement of 30 frames

per second. Once we confirmed that each part met the necessary standards, we began

preparing for the final thesis presentation.

During the poster creation phase, I provided the main images and key technical

descriptions for my teammates. Prior to the presentation, I listed the important sections

of the code and explained the corresponding concepts to my team members. This

included the significance and use of the ROC curve, the principles of the random forest

model, and how to call its API. This ensured that each team member could discuss a

specific part of the program, thereby ensuring a smooth project presentation.

In this phase, I consolidated the new knowledge I gained in data preprocessing and

analysis, and I learned more about constructing binary classification models. I

successfully completed the tasks of data preprocessing and analysis and assisted a

teammate with code integration. Compared to the previous group's program, our

classification model's accuracy significantly improved to 93%, and the frame rate for

analysis increased to meet real-time standards. I also acquired a deeper understanding

of how to connect interfaces and applied this knowledge in practice.

Although the project's completion level is very high, we identified a few issues.

For example, Professor Pinata noted that the font size of the results display was small

and hard to read for many people. This feedback was valuable, and we immediately

adjusted the font size and added different colors for different results—green for correct

results and red for incorrect ones. Additionally, we discussed how to implement this

software in real-world applications. One challenge is the shakiness of the hand skeleton

detected by MediaPipe, which can cause false readings. After internal discussions, we

decided that if all prediction results over a short period are incorrect, the hand posture

is likely incorrect. Conversely, if any frame in that period shows a correct prediction,

the posture is probably correct, despite some detection shakiness.

Furthermore, we analyzed potential issues and corresponding solutions. Since the

dataset consists of photos of male hands aged 20-23, there may be analysis errors due

to gender and age differences. To mitigate this, we should convert distances to ratios or

expand the dataset to include samples from various ages and genders. In summary,

while the project is highly complete, there are still areas for improvement.

4. Literature Review

PART-1: Handwriting posture plays a crucial role in the legibility, speed, and

comfort of writing. Improper posture can lead to discomfort, fatigue, and even long-

term health issues such as repetitive strain injuries (Blackburn, 2001). Various studies

have been conducted in the field of handwriting analysis and ergonomics to understand

the impact of posture on writing performance and to develop techniques for improving

posture.

Part-2:

In data analysis and machine learning projects, preprocessing the dataset is crucial.

Common preprocessing methods include handling missing values, data standardization,

feature selection, and feature engineering. Among these, one-hot encoding is a

commonly used technique, especially for handling categorical variables. By encoding

categorical variables into binary form, models can better understand and process these

variables. When preparing data for model training, one-hot encoding can effectively

improve the performance and accuracy of the model.

In research on machine learning models for crop recommendation systems,

common algorithms include random forest, support vector machine (SVM), and neural

networks. These algorithms demonstrate wide applicability and effectiveness in

agricultural decision-making. Random forest is an ensemble learning method that can

handle large amounts of features and samples, showing excellent performance in

dealing with nonlinear relationships and high-dimensional data. SVM performs well in

classification and regression tasks, especially for nonlinear classification problems.

Neural networks are powerful models capable of learning complex patterns and

relationships, although they may require more computational resources and time for

training and tuning.

Data visualization plays a crucial role in data analysis, aiding in a more intuitive

understanding and interpretation of data. Common data visualization techniques

include confusion matrix analysis, heatmap visualization, and feature importance plots.

Confusion matrices provide a clear representation of the model's performance across

different categories, aiding in the assessment of model performance. Heatmap analysis

visually presents the relationships and patterns among data, facilitating the discovery

of hidden trends and patterns. Feature importance plots help determine which features

have the greatest impact on the model's prediction results, guiding feature selection and

model optimization.

Part-3:

Achieving real-time processing is a primary challenge in gesture detection. The

literature emphasizes the importance of optimizing video frame analysis to maintain

high frame rates, essential for smooth user experiences. Techniques such as

multithreading and efficient frame encoding are crucial. Studies have shown that

leveraging continuous frame analysis can significantly enhance performance by

predicting subsequent frames based on previous ones, thereby reducing the

computational burden (Zhang et al., 2021).

Another critical challenge is ensuring high accuracy and robustness of the

detection models. Inadequate data preprocessing and simplistic feature extraction

methods can lead to poor performance. Advanced data preprocessing techniques,

including one-hot encoding and comprehensive feature selection, are vital for

improving model accuracy (Han et al., 2020). Additionally, employing sophisticated

classification models like Random Forests can enhance prediction accuracy and

interpretability (Breiman, 2001).

Gesture detection systems have significant applications in educational tools and

interactive user interfaces. These systems can assist in teaching and learning by

providing real-time feedback on hand postures and movements. The implementation

discussed in the project highlights the integration of a gesture detection model with an

educational tool for evaluating pen-holding postures. The use of Random Forests for

classification and the optimization of frame retrieval processes were key to achieving

high accuracy and real-time performance.

5. Results& Conclusions

Part-1: Pen Grip Pose Detection based on MideaPipe

During the initial phase of the project, my responsibilities mainly focused on

proposing and explaining various ideas, writing the interface part of the requirement

document, and processing file formats. In this stage, I actively applied the knowledge I

had acquired and drafted a comprehensive project proposal. Through in-depth

discussions with team members, I proposed multiple solutions. I also continuously

refined the requirement document using the skills I had acquired from previous courses.

Throughout this process, I continued to learn new knowledge, including delving into

the detailed processes of case analysis.

PART-2: AI-Aided Crop Recommendation Software Requirement Specification

In the second phase of our project, we transitioned from conceptualization to

implementation, meticulously analyzing the previous group's requirements and crafting

code to realize these objectives. Despite encountering challenges such as the absence

of a dataset initially, we persevered, sourcing pertinent data and delineating our

approach through the Software Design Description (SDD). Subsequent to preparatory

tasks, we delved into coding, with my responsibilities spanning data preprocessing,

model construction, and evaluation, realms entirely new to me. Through diligent

learning and application, I contributed substantively to the project's progression,

culminating in the establishment of a robust model for crop recommendation.

Navigating through this phase was undoubtedly challenging, given the novelty of

the terrain. However, by diligently acquainting myself with data analysis principles and

visualization techniques, I successfully navigated uncharted waters, contributing

substantively to the project's advancement. Furthermore, my role extended beyond

individual contributions; I assumed a supervisory role, ensuring cohesion amongst team

members and overseeing code integration. Through diligent oversight, I ensured the

smooth operation of servers and the seamless progression of UI development,

enhancing the project's overall quality.

PART-3: Pen Grip Pose Detection based on MideaPipe

In the third phase of the project, I returned to the gesture detection project from

the first phase, completing the entire code implementation, adding extra features,

conducting A/B testing, and preparing for the project presentation and demonstration.

Initially, we assessed the project's current progress and functionality, rating the quality

and completion status of each feature. While most functionalities had been

implemented, there were several issues that needed to be addressed, such as the lack of

a unified user interface, frequent lag during video frame reading, and low accuracy in

model predictions. By redesigning the code, employing multithreading techniques, and

improving prediction methods, we significantly enhanced the project's performance and

accuracy.

In addressing these issues, I was responsible for data preprocessing and building

the classification model. Using one-hot encoding and the random forest model, I

successfully constructed a classification model with an accuracy of 93%. Additionally,

I assisted my teammates in integrating the code, ensuring the implementation of

multithreading and continuous video frame processing, which improved the real-time

analysis capabilities. During the project testing phase, we verified the performance of

each component and prepared for the project presentation. Although the overall project

completion was high, we still identified and resolved some issues, such as adjusting the

font size and color of the result display. We also discussed the practical application of

gesture detection and potential improvement measures.

Overall, this phase not only reinforced my new knowledge in data preprocessing

and analysis but also enhanced my understanding and application of binary

classification model construction and interface integration.

6. References

[1] Blackburn-Brockman, E. (2001). Prewriting, planning, and professional

communication. The English Journal, 91(2), 51. https://doi.org/10.2307/822345 .

[2] Nagaraju, Mr. M. (2022). Digital handwriting recognition using hand tracking

by using media pipe and OPENCV libraries. International Journal for Research in

Applied Science and Engineering Technology, 10(7), 659–666.

https://doi.org/10.22214/ijraset.2022.44647

[3] Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A., Sung, G., Chang, C.-

L., & Grundmann, M. (2020, June 18). MediaPipe hands: On-device real-time hand

tracking. arXiv.org. https://arxiv.org/abs/2006.10214

[4] Tao, W., Leu, M. C., & Yin, Z. (2018). American sign language alphabet

recognition using convolutional neural networks with Multiview Augmentation and

inference fusion. Engineering Applications of Artificial Intelligence, 76, 202–213.

https://doi.org/10.1016/j.engappai.2018.09.006.

[5] DHAMODHARAN R. (2022). Machine learning in agriculture.

https://www.kaggle.com/code/dhamur/machine-learning-in-agriculture.

[6] TARIQ MAHMOOD. (2024). Crop_Recommedation_Agri_Project.

https://www.kaggle.com/code/tariqbashir/crop-recommedation-agri-project/notebook.

[7] Sphinx. (2024). SHAP API. https://github.com/shap/shap

[8] scikit-learn. (2024). RandomForestClassifier API https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

[9] Kuo, Yang & Zhang, Zhen. (2019). Real-time Pattern Recognition for Hand

Gesture Based on ANN and Surface EMG. 799-802. 10.1109/ITAIC.2019.8785894.

[10] Jiawei, H., & Micheline, K. (2006). Data mining: concepts and techniques.

Morgan kaufmann.

[11] Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001).

https://doi.org/10.1023/A:1010933404324

7. Appendix

Program link:

 Part-1: https://github.com/kermit0125/CPS4951_Part1

 Part-2: https://github.com/CapstoneGroup09-1/DataSet_Analysis

 Part-3: https://github.com/kermit0125/Pen-Grip-Pose-Detection-based-on-

MideaPipe

Introduction of API:

 Pandas: Pandas is one of the primary tools in Python for data manipulation

and analysis. It provides efficient data structures and functions, especially

suitable for dealing with structured data. The core data structure in Pandas is

DataFrame, which is similar to an Excel spreadsheet but more flexible and

powerful. With Pandas, users can perform operations such as data cleaning,

transformation, analysis, and visualization. This project is mainly used for the

data cleaning part of data preprocessing.

 Scikit-learn:

Scikit-learn is a Python library for machine learning, providing a wide range

of machine learning algorithms and tools, including classification, regression,

clustering, and dimensionality reduction. It is designed to be simple and easy

to use, suitable for both beginners and experts in machine learning. Scikit-

learn comes with many classical machine learning algorithms built-in and

provides rich documentation and examples for users to learn and utilize. This

project is mainly used for the scatter plot generation part of data analysis.

 OpenCV:

OpenCV is an open-source computer vision library that provides a rich set of

image processing and computer vision algorithms for tasks such as image

processing, object detection, feature extraction, and image recognition. It

supports multiple programming languages, including C++, Python, and Java,

and is cross-platform, running on Windows, Linux, macOS, and other

operating systems. OpenCV offers a wide range of image processing and

computer vision algorithms, along with support for hardware acceleration and

parallel computing. This project is mainly used to read the camera.

 MediaPipe:

MediaPipe is an open-source framework for building machine learning-based

media processing pipelines, aimed at simplifying the development and

deployment of media processing tasks. It provides a collection of pre-trained

machine learning models and components for processing video, audio, and

image data. MediaPipe supports real-time processing and offers an easy-to-

use Python API for users to build custom media processing applications. This

project is mainly used for picture processing and skeleton prediction.

Data collection mechanism

1. First step - Determine data needs:

Determine the types, quantities, and formats of data needed for the

project. This will help you identify which datasets to download from

Kaggle and what kind of data to capture yourself.

2. Second step – Photograph or find data:

In the second part, the data set is a relevant data set retrieved on kaggle.

In the third part, the data set is shot by the project team from multiple

angles and handed over to MediaPipe to read and analyze the data table.

3. Third Step - Create the data directory structure:

Create a clear data directory structure, including folders for storing

Kaggle data and your own captured data. Add documentation or

descriptions to the directory structure describing the contents and

purpose of each dataset.

Code written by myself

Part-2:

Code of main code

import numpy as np

import pandas as pd

import joblib

def predict_crop(N, P, K, temperature, humidity, ph, rainfall):

 # 加载模型
 model = joblib.load('random_forest_model.pkl')

 # 加载标签编码器
 encoder = joblib.load('label_encoder.pkl')

 # 构建输入数据
 data = np.array([[N, P, K, temperature, humidity, ph, rainfall]])

 # 进行预测
 prediction = model.predict(data)

 # 获取预测结果的标签
 predicted_label = encoder.inverse_transform(prediction)[0]

 return predicted_label

def main():

 print("请输入以下参数以预测作物类型:")

 N = float(input("土壤中的氮含量: "))

 P = float(input("土壤中的磷含量: "))

 K = float(input("土壤中的钾含量: "))

 temperature = float(input("气温（摄氏度）: "))

 humidity = float(input("湿度（百分比）: "))

 ph = float(input("土壤的 pH值: "))

 rainfall = float(input("降雨量（毫米）: "))

 predicted_label = predict_crop(N, P, K, temperature, humidity, ph,

rainfall)

 print(f"预测的作物类型为: {predicted_label}")

if __name__ == "__main__":

 main()

Code of Data Processing

import warnings

warnings.filterwarnings("ignore")

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn import model_selection

from sklearn import preprocessing

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

import itertools

import joblib

df = pd.read_csv('Crop_recommendation.csv')

分离标签与特征值

x = df.drop(['label'], axis=1) # 特征值

Y = df['label'] # 标签
labels = df['label'].tolist()

encode = preprocessing.LabelEncoder()

y = encode.fit_transform(Y) # 标签编码
print(y)

分离测试集以及数据集
x_train, x_test, y_train, y_test = model_selection.train_test_split(x,

y, test_size=0.2, random_state=10)

构建随机森林模型
model = RandomForestClassifier(max_depth=5, n_estimators=100,

random_state=5)

model.fit(x_train, y_train)

特征重要性分析
model.feature_importances_

feature_names = x_test.columns

feature_importances = model.feature_importances_

indices = np.argsort(feature_importances)[::-1]

plt.figure()

plt.title("Feature Importance")

plt.bar(range(len(feature_importances)), feature_importances[indices],

color='b')

plt.xticks(range(len(feature_importances)),

np.array(feature_names)[indices], color='b', rotation=90)

plt.savefig('my_plot.png')

预测测试集

y_pred = model.predict(x_test) # 定性数据

y_pred_quant = model.predict_proba(x_test) # 定量数据

混淆矩阵
confusion_matrix_model = confusion_matrix(y_test, y_pred)

混淆矩阵热力图绘制函数
def cnf_matrix_plotter(cm, classes):

 plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) # 更换颜

色映射为蓝色
 plt.title('Confusion Matrix')

 plt.colorbar()

 tick_marks = np.arange(len(classes))

 plt.xticks(tick_marks, classes, rotation=45)

 plt.yticks(tick_marks, classes)

 # 标准化数字格式，四舍五入到整数
 fmt = 'd'

 thresh = cm.max() / 2.

 for i, j in itertools.product(range(cm.shape[0]),

range(cm.shape[1])):

 plt.text(j, i, format(cm[i, j], fmt),

horizontalalignment="center",

 color="white" if cm[i, j] > thresh else "black")

 plt.tight_layout()

 plt.ylabel('True Label')

 plt.xlabel('Predicted Label')

 plt.show()

 plt.savefig('Confusion_matrix_heat_map.png')

调用方法绘制混淆矩阵热力图
cnf_matrix_plotter(confusion_matrix_model,

['rice','maize','chickpea','kidneybeans','pigeonpeas','mothbeans','mung

bean','blackgram','lentil',

'pomegranate','banana','mango','grapes','watermelon','muskmelon','apple

','orange','papaya','coconut','cotton','jute','coffee',''])

将模型保存为.pkl 文件
joblib.dump(model, 'random_forest_model.pkl')

创建并拟合标签编码器
encoder = preprocessing.LabelEncoder()

encoder.fit(labels) # labels 是你的标签数据

将标签编码器保存为.pkl 文件
joblib.dump(encoder, 'label_encoder.pkl')

Part-3:

Code of Data Processing

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix, precision_score,

recall_score, f1_score, roc_curve, auc

import seaborn as sns

import joblib

df=pd.read_csv('ProcessedData.csv')

X = df.drop('Gesture', axis=1) # 特征列

y = df['Gesture'] # 标签列

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=10) # 划分测试集和训练集，测试集 20%，训练集 80%

model = RandomForestClassifier(max_depth=5, n_estimators=100,

random_state=5) # 100棵决策树，最大深度 5，随机数种子
model.fit(X_train, y_train)

计算预测结果和预测概率
y_predict = model.predict(X_test)

y_predict_proba = model.predict_proba(X_test)

计算混淆矩阵
cm = confusion_matrix(y_test, y_predict)

print("Confusion Matrix:")

print(cm)

计算 Precision、Recall、F1-Score
precision = precision_score(y_test, y_predict)

recall = recall_score(y_test, y_predict)

f1 = f1_score(y_test, y_predict)

print("\nPrecision:", precision)

print("Recall:", recall)

print("F1-Score:", f1)

绘制混淆矩阵的热图
plt.figure(figsize=(8, 6))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False)

plt.xlabel('Predicted Labels')

plt.ylabel('True Labels')

plt.title('Confusion Matrix')

plt.show()

保存混淆矩阵图像
plt.savefig('Confusion_Matrix.png')

计算 ROC 曲线
fpr, tpr, thresholds = roc_curve(y_test, y_predict_proba[:, 1])

roc_auc = auc(fpr, tpr)

绘制 ROC 曲线
plt.figure(figsize=(8, 6))

plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area

= %0.2f)' % roc_auc)

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Receiver Operating Characteristic (ROC) Curve')

plt.legend(loc="lower right")

plt.show()

保存混淆矩阵图像
plt.savefig('ROC.png')

将模型保存到文件
joblib.dump(model, 'random_forest_model.pkl')

Code of Data Processing

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

 #pip install scikit-learn导入 sklearn包

from sklearn.model_selection import train_test_split #导入划分训练

测试集功能的 APA

from sklearn.ensemble import RandomForestClassifier #导入随机森林

模型的 APA

from sklearn.tree import export_graphviz #导入森林模型

Tree可视化工具
from IPython.display import Image

import graphviz

df = pd.read_csv('ProcessedData.csv')

X = df.drop('Gesture',axis=1) #特征列

y = df['Gesture'] #标签列

X_train,X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=10) #划分测试集和训练集，测试集 80%，训练集 20%

model = RandomForestClassifier(max_depth=5, n_estimators=100,

random_state=5) #100棵决策树，最大深度 5，随机数种子
model.fit(X_train, y_train)

estimator = model.estimators_[20]

print(estimator)

feature_names =X_train.columns

y_train_str =y_train.astype('str')

y_train_str[y_train_str=='0'] = 'Wrong'

y_train_str[y_train_str=='1'] = 'Correct'

y_train_str=y_train_str.values

import os

os.environ["PATH"] += os.pathsep + 'C:/Program Files/Graphviz/bin'

dot_file = 'tree.dot'

export_graphviz(estimator, out_file=dot_file,

 feature_names=feature_names,

 class_names=y_train_str,

 rounded=True, proportion=True,

 label='root',

 precision=2, filled=True)

graph = graphviz.Source.from_file(dot_file)

graph.render(filename='tree', format='png', view=True)

8. Acknowledgements

As I approach the completion of my studies and embark on a new journey, I would

like to express my deepest gratitude to all who have supported and encouraged me.

First and foremost, I want to thank Dr. Pinata Winoto and Dr. Tiffany Tang for

their diligent guidance and patient responses throughout the entire research process.

Your expertise and profound insights have provided invaluable guidance for my thesis,

and I have greatly benefited from them.

I also want to express gratitude to all the professors and scholars in the Computer

Science Department of the College of Engineering. Through your teaching and research,

you have imparted rich knowledge and inspiration to me, enabling me to continually

progress and grow into a better scholar.

This school has provided me with numerous opportunities. Beyond examinations,

the school has been dedicated to helping us develop in multiple directions. Each course

comes with corresponding projects, which not only help us grasp knowledge but also

allow us to truly apply it to real-life situations, which has taught me a lot.

Furthermore, I need to thank the student ambassadors. It is through them that I

found a sense of belonging in this school and have grown in various aspects, whether

in character, leadership, values, or through the diverse friendships I have made.

Lastly, I want to express my gratitude to my family and friends. Thank you for

continuously supporting me on the path to pursuing my dreams, and for providing me

with endless encouragement and understanding. Without your support, I would not have

been able to successfully complete this journey.

To all those who have helped and supported me throughout my academic career,

your contributions will always be cherished. Wishing everyone smooth sailing and a

bright future!

With sincerest gratitude,

Keming Xing

