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1. Abstract

My graduation project primarily encompasses two major sections: Pen Grip
Detection and Agricultural Data Analysis. In the first section, I introduce the conception,
discussion, and requirements documentation for the Pen Grip Detection project. The
second section focuses on the Agricultural Data Analysis project, including the review
of requirement documents, data set acquisition, and optimization. In this project, we
employed one-hot encoding to transform qualitative data into quantitative data and
successfully built a high-accuracy random forest multi-classification model for data
analysis. In the third section, I revisited the Pen Grip Detection project, analyzed the
previous group’s code, and made optimizations. Through data preprocessing and the
construction of a binary classification model, we not only improved the code structure
but also assisted team members in integrating the code modules. Ultimately, by
demonstrating the code execution results, we enhanced the project’s presentation
quality. Our work not only improved the project's accuracy and practicality but also
fostered collaborative growth among team members.
2. Keywords

Data analysis, random forest model, one-hot vector encoding, data classification,
Python, software requirements document, MediaPipe, OpenCV, computer vision,
Camera reading
3. Contents

First of all, since this graduation project is divided into three parts, the following

parts will also discuss the contents of the three parts separately in chronological order.



For the first part, the main tasks of our group are to investigate project usability,
write proposals, and write project requirements documents. Among them, the proposal
mainly includes project goals and effect estimates, background and literature surveys,
case studies, and sketch introductions.

In proposal, we mainly give the following content:

The main goal of the project is to develop a system for detecting and analyzing
handwriting gestures using MediaPipe, an open source framework for building machine
learning solutions. The scope of the project includes:

® Implementing hand detection and tracking using MediaPipe's Hand Tracking

solution to locate and track the position and movement of the hand.

® Developing a model for recognizing different handwriting postures, such as

pen grip variations and hand orientations

® Integrating real-time feedback to provide users with guidance on improving

their handwriting posture

® C(Creating a user-friendly interface for visualizing and analyzing handwriting

posture data.

Handwriting posture plays a crucial role in the legibility, speed, and comfort of
writing. Improper posture can lead to discomfort, fatigue, and even long-term health
issues such as repetitive strain injuries(Blackburn, 2001). Various studies have been
conducted in the field of handwriting analysis and ergonomics to understand the impact
of posture on writing performance and to develop techniques for improving posture.

After evaluating the prediction results and feasibility assessment, we looked for



similar cases, such as MediaPipe's related gesture detection model and the application

of other visual algorithms, and completed the Case Study:

Nagaraju (2022) used the MediaPipe framework to develop a digital
handwriting recognition system that can detect hand gestures and analyze
writing gestures. This provides the technical basis for this study.

Zhang et al. (2020) developed a real-time hand tracking system using the
MediaPipe hand tracking module. The system can locate and track hand
position and movement. This provides a methodological basis for this study.
Tao et al. (2018) developed an American Sign Language alphabet recognition
system using convolutional neural networks and multiview data augmentation.
Their research demonstrated hand gesture tracking and recognition
capabilities using MediaPipe and machine learning algorithms. This provides

an algorithmic basis for this study.

After predicting and analyzing all possible outcomes, we wrote a simple

deliverable presentation for subsequent judgment to other groups. The content is as

follows:

A fully functional handwriting posture detection system implemented using
MediaPipe.

Documentation and user guides explaining the system's functionality, usage
instructions, and integration guidelines.

A research report summarizing the methodology, results, and findings of the

project, including insights from the literature review and case study.



® Source code and model weights for the developed system, released under an
open-source license to encourage further research and development in the
field.

® The take-home deliverables will enable stakeholders, including researchers,

educators, and developers, to understand, utilize, and build upon the outcomes
of the project.

The above describes the Proposal section of the first part of my project. In this
phase, I actively participated in the conception and discussion of ideas. I utilized my
knowledge of MediaPipe and data analysis to explain the project's principles and
feasibility to my teammates, thereby helping them gain a deeper understanding of the
project.

The remaining section of the first part covers the preparation of the Software
Requirements Document (SRS). Although the document was divided into sections and
assigned to different team members, I was responsible for some of the crucial parts.
Specifically, I handled the Product Perspective, including the System Interfaces, User
Interfaces, Hardware Interfaces, Software Interfaces, Communications Interfaces,
Memory Constraints, Operations, and Site Adaptation Requirements. In this role, I
ensured that each of these sections was meticulously detailed, accurately reflecting the
project's requirements and specifications. These sections can be primarily categorized
into three main types: the minimum support parameters required by the software, the
key interfaces of the software and their interconnections, and the network security

1ssues involved.



First, the minimum support parameters for the software include basic requirements
regarding computer hardware. For example, one requirement states: "In 95% of cases,
the response time during regular periods should not exceed 1.5 seconds, and during
peak periods, it should not exceed 4 seconds."

In the main interface section of the software, the content becomes more crucial as
it encompasses all the functionalities of the final product and the relationships between
each module. These interfaces include the MediaPipe Hand Tracking API, Camera
Interface API, Voice module interface, Data preprocessing model, Posture coefficient
acquisition model, Posture judgment model, and View model. I also created a diagram
illustrating their relationships, which can be seen in the diagram below. These interfaces
are interconnected and mutually influential, forming the optimal components of the
software. For instance, in the Posture judgment model, I wrote: "Based on the key point
information of the hand and the corresponding angle coefficient, determine whether the

current posture meets the correct pen holding posture."”

Get pictures from the camera —

Picturel: Schematic diagram of the relationship between various interfaces



In addressing network security issues, my primary focus was on safeguarding user
data and ensuring the security of user logins. In the context of software usage,
protecting user privacy is paramount. Through analysis in these areas, the software can
be made more robust. For instance, in the Encrypted Data Transmission section, I
mentioned: "Network-transmitted data should undergo encryption to ensure data
confidentiality, preventing eavesdropping, theft, or tampering during data collection,
transmission, and processing. Business data should be encrypted during storage to
ensure its inviolability."

In the preparation of the Software Requirements Document, I applied the
knowledge I acquired in software engineering. Both functional requirements (interface
documents) and non-functional requirements (hardware requirements and network
security requirements) were carefully considered and documented based on practical
considerations. Additionally, I was responsible for the integration of the final
requirements document. By crafting the table of contents, introduction, and summary
sections, I enhanced the readability of the requirements document.

In the first part of the project, we encountered several challenges. Since this stage
only involves planning and conceptualizing the target software program, there may be
ideas that are difficult to implement. To mitigate this situation, we needed to lower
certain standards and conduct early investigations into the feasibility of these ideas. If
some ideas prove unattainable, we needed to determine to what extent we could lower
the standards to align with our vision for the software. Overall, as part of software

design, the work in this stage is relatively straightforward, but it requires ensuring that



the ideas are reasonable and objective, conducting practical investigations, and
analyzing and evaluating the expected outcomes.

The above represents all the work content of the first part, with the summary to be
included in the Results section. Next, we will move on to the work content of the second
part.

In the second part, we were responsible for transitioning from an idea to a basic
program. During this transition, we not only needed to thoroughly understand the
requirement document provided by the previous group but also had to write relevant
code based on the requirements to improve feasibility. In this part, we conducted
evaluations of the results from the previous group, wrote the SDD (Software Design
Description), analyzed user stories, and wrote some code.

Firstly, in understanding the requirement document from the previous group, we
thoroughly examined each interface provided by the previous group. We learned that
this was primarily a software for recommending crops for cultivation. Users can input
parameters of their land, such as pH value and soil humidity, to receive
recommendations from the system regarding suitable crops. However, we encountered
an issue: the requirement document did not include a dataset. As a data classification
project, having a dataset is essential. Therefore, we began searching for available
datasets on platforms like Kaggle. Eventually, we found a dataset containing various
soil data and recommended crop types.

After finding the dataset, we began the process of writing the SDD (Software

Design Description). During this process, we created use-case diagrams, sequence



diagrams, and class diagrams. Below is an example of one of the diagrams. Through
these diagrams, we understood the relationships between various interfaces, provided
some usage scenarios, and presented preliminary UI design sketches for the user

interface.

User Browser Web Server Auth Server Resource Server
—_— H H : :

o

Enter URL >,
[—I Access URL =

: Start OAuth
i &— Redrict to Auth URL ——

Open redirct URL =)
PRS- R €aesaccananccacanaaan p,(.v“,"g AUth U sesscccecssaaccaancas .
Authorise or deny Present submited data from user ———p
: —
Verify & Create
Auth code
“~) &—— Redirect to Web S¢rver with Auth code
Follow redirect $ H
to Web Server —— Present Auth Code —’Ij
€ --- Return Access Token *===
Call protected Resource H
h —_—
with Accegs Token D
N Return prote:cted TESOUrce s=essraseanssnua T
€ coccncncccncnaciccancens

Picture2: Sequence Diagram of our Program

After completing these preparatory tasks, we began the coding phase, which was
divided into three main parts: the interactive Ul design part, the button interaction
processing part, the server setup part, the data preprocessing part, the model
construction part, the model evaluation part, and the organization and integration part.
My responsibilities included the data preprocessing part, the model construction part,
and the model evaluation part. In fact, prior to this, I had never worked with data
analysis. I had only studied some knowledge about convolutional neural networks and

was familiar with definitions related to accuracy, recall rate, and F1 score in data



statistics.

Firstly, in the data preprocessing part, I learned and utilized one-hot encoding to

support dataset preprocessing. One-hot encoding enables each state to have its own

independent register bit. Based on one-hot encoding, qualitative data in the dataset can

be converted into quantitative data. For example, for data indicating whether it belongs

to region A or region B, it can be transformed into A-True: 1, B-True: 0, or A-True: 0,

B-True: 1, converting A or B into computer-understandable 1 and 0, thereby improving

the accuracy of the dataset. In addition to these preprocessing techniques, I also used

SHAP to generate some analysis charts for dataset features. For example, the following

chart illustrates an analysis of feature importance.
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Picture3: Processed data chart example
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Picture4: Feature importance histogram of the dataset
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In establishing the data classification model, I utilized the Random Forest model.
I studied relevant knowledge about the Random Forest model online. It is a classifier
consisting of multiple decision trees, and its output category is determined by the mode
of the categories output by individual trees. With the Random Forest model, we can
implement binary classification models or multi-classification models with multiple
features. I used the scikit-learn API as the construction API for the Random Forest
model. I divided the dataset into 80% for training and the remaining 20% for testing.
Finally, through training on the training set, we obtained a Random Forest model that
can be used to determine the optimal crop.

During the model analysis stage, I not only used the test set for model testing to

obtain accuracy, recall rate, and F1 score but also created a confusion matrix heatmap
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to visually present the accuracy of the model. Additionally, I analyzed the impact of
various data on the final model evaluation and organized the results into an HTML file,
which includes the heatmap and detailed analysis. The specific content is shown in the

figure below:

Predicted | ahel

Picture5: Confusion matrix heat map of the model
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Picture6: Example diagram of the impact of each data on the final evaluation of
the model

Overall, my contributions in the second part are as described above. During the
task, I planned the following workflow for myself: In the first week, I needed to find
similar datasets, participate in project discussions, and learn about dataset analysis. In
the second week, my tasks included learning about dataset analysis, finding a model
that fits the current dataset, and writing the code to analyze the dataset. In the third
week, I needed to continue learning about dataset analysis, write the code to analyze
the dataset, and learn methods of data visualization. In the final week, my tasks involved
testing the trained model using the test set, performing data visualization of the test

results, and importing the model into the application.
This part may have been the most challenging for me because all the knowledge

involved here was completely new to me. It was my first time delving into data analysis,



and I successfully applied it to the project's data. Additionally, I needed to understand
the underlying principles of data preprocessing and analysis to avoid errors. In the final
part of model evaluation, I also spent a lot of time learning about data visualization. I
presented the impact of different data on the results in the most visible form through
prominent charts.

At the same time, I am still encouraging other members of the same group to
complete their corresponding work. At work, I often supervise and supervise their work
progress and whether the code they write can be integrated, because for a project, only
part of the code is useless, and all the codes must be integrated., only when the whole
can be put together and used can it be considered complete. During the subsequent
supervision, I noticed that the servers responsible for other students had been
successfully built and running normally, and the UI part was also going smoothly. I
designed a good-looking UI and question system for the interface, which improved the
quality of the entire project.

In the third part, I returned to the project I worked on in the first part, which is
about gesture detection. In this section, we needed to complete the entire project code,
add additional features, conduct A/B testing for the software, and prepare for project
presentation and demonstration.

Firstly, upon regaining access to this project, it's essential to conduct an assessment
of its current progress and functionalities. We need to evaluate and score each feature
based on its completion status and quality. While the project has already implemented

most of the functionalities by the time I regained access, a closer inspection reveals



numerous existing issues that need to be addressed.

The first problem is there's a lack of a unified interactive interface, which appears
quite rudimentary and can only be accessed from the code interface. Secondly, frequent
stuttering occurs during the reading of video frames, with the FPS dropping below 3
during analysis. After a thorough analysis of the code, it's evident that this is due to the
previous team's failure to utilize the continuous video frame encoding method. Within
MediaPipe, there are two modes of frame retrieval: static frame retrieval and continuous
frame retrieval. In the continuous frame analysis mode, the model predicts the next
frame based on the previous frame, reducing the CPU usage of the program.
Additionally, the model is restarted in every loop iteration, significantly reducing the
analysis speed. To address this issue, we need to not only rewrite the code section
related to OpenCV frame retrieval but also employ multithreading techniques to
optimize the model's runtime speed.

The third issue is that the model's predictions are not based on data analysis but
rather on simplistic size comparisons. This approach results in very low accuracy
because any data falling outside the specified range for correct pen-holding posture is
deemed incorrect. Consequently, most of the predicted gestures are erroneous. To
rectify this situation, we need to employ data analysis to build a classification model.
Subsequently, the data obtained from the classification model should be integrated into
the existing program, ensuring smooth operation. The fourth issue pertains to the
complexity of the code. Due to the code's disorganized format and multiple versions, it

requires meticulous scrutiny to confirm the purpose of each line of code and the sources



of their libraries.

I delegated the first, second and fourth issues to other team members and began
tackling the third problem myself. I considered it the most challenging because it
required not only preprocessing the dataset but also building a binary classification
model. Furthermore, it entailed creating interfaces without disrupting the existing code
structure to ensure smooth importation of feature data required for classification and
exporting of result data post-classification. Despite the daunting nature of this task, its
similarities to the work I completed in the second part prompted me to once again utilize
one-hot encoding and the random forest model for this data analysis endeavor.

The previous group captured and converted the data into a usable format. To
preprocess this dataset, I first needed to understand it thoroughly. After multiple
comparisons and inquiries with the previous team members, I finally grasped the
meaning of each column in the dataset. Based on this understanding, I separated the
feature columns from the result columns and applied one-hot encoding to them.
However, since I only needed the model this time, I did not analyze each feature
individually. With the preprocessed dataset, I could then begin training the classification
model.

With the experience from the previous task, I again utilized the random forest
model for data analysis and classification. I learned from my previous mistakes and
adjusted the thresholds for the trees in the random forest. I recorded the model's
accuracy, recall, and F1 score, and generated a confusion matrix and ROC curve to

evaluate the model's accuracy. After testing the model with the test set, we achieved an



accuracy of 93%, a recall of 79%, and an F1 score of 86%. Overall, the results from
this classification model were consistent with expected patterns. By comparing the
confusion matrix and the ROC curve, I found that the ROC curve was very close to the
ideal standard. Therefore, I concluded that this classification model was correctly built.

Below are the confusion matrix and ROC curve for this model.

Receiver Operating Characteristic (ROC) Curve
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Picture7: ROC curve of two-classification model of pen holding posture
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Picture8: Confusion matrix of two-classification model of pen holding posture

However, after I completed my part, the teammate responsible for the fourth part
encountered issues. He was unable to integrate the code because he did not understand
how to import these parameters or use the main function to unify the data. Admittedly,
I wasn't very skilled in this area either, so I decided to learn about it. After some time
studying, I understood the usage of the main function and initialization methods. I
modified parts of the code, incorporated the multithreading and continuous video frame
processing code from the first part, and integrated the model into the analysis of the
camera feed data. I also ensured the code was well-visualized, enabling the execution
of all necessary preparations by simply running the main function.

Lastly, for the overall project testing phase, we evaluated each component of the

program against the requirements outlined in the documentation. For example, we



verified that the frame rate for real-time video display met the requirement of 30 frames
per second. Once we confirmed that each part met the necessary standards, we began
preparing for the final thesis presentation.

During the poster creation phase, I provided the main images and key technical
descriptions for my teammates. Prior to the presentation, I listed the important sections
of the code and explained the corresponding concepts to my team members. This
included the significance and use of the ROC curve, the principles of the random forest
model, and how to call its API. This ensured that each team member could discuss a
specific part of the program, thereby ensuring a smooth project presentation.

In this phase, I consolidated the new knowledge I gained in data preprocessing and
analysis, and I learned more about constructing binary classification models. I
successfully completed the tasks of data preprocessing and analysis and assisted a
teammate with code integration. Compared to the previous group's program, our
classification model's accuracy significantly improved to 93%, and the frame rate for
analysis increased to meet real-time standards. I also acquired a deeper understanding
of how to connect interfaces and applied this knowledge in practice.

Although the project's completion level is very high, we identified a few issues.
For example, Professor Pinata noted that the font size of the results display was small
and hard to read for many people. This feedback was valuable, and we immediately
adjusted the font size and added different colors for different results—green for correct
results and red for incorrect ones. Additionally, we discussed how to implement this

software in real-world applications. One challenge is the shakiness of the hand skeleton



detected by MediaPipe, which can cause false readings. After internal discussions, we
decided that if all prediction results over a short period are incorrect, the hand posture
is likely incorrect. Conversely, if any frame in that period shows a correct prediction,
the posture is probably correct, despite some detection shakiness.

Furthermore, we analyzed potential issues and corresponding solutions. Since the
dataset consists of photos of male hands aged 20-23, there may be analysis errors due
to gender and age differences. To mitigate this, we should convert distances to ratios or
expand the dataset to include samples from various ages and genders. In summary,
while the project is highly complete, there are still areas for improvement.

4. Literature Review

PART-1: Handwriting posture plays a crucial role in the legibility, speed, and
comfort of writing. Improper posture can lead to discomfort, fatigue, and even long-
term health issues such as repetitive strain injuries (Blackburn, 2001). Various studies
have been conducted in the field of handwriting analysis and ergonomics to understand
the impact of posture on writing performance and to develop techniques for improving
posture.

Part-2:

In data analysis and machine learning projects, preprocessing the dataset is crucial.
Common preprocessing methods include handling missing values, data standardization,
feature selection, and feature engineering. Among these, one-hot encoding is a
commonly used technique, especially for handling categorical variables. By encoding

categorical variables into binary form, models can better understand and process these



variables. When preparing data for model training, one-hot encoding can effectively
improve the performance and accuracy of the model.

In research on machine learning models for crop recommendation systems,
common algorithms include random forest, support vector machine (SVM), and neural
networks. These algorithms demonstrate wide applicability and effectiveness in
agricultural decision-making. Random forest is an ensemble learning method that can
handle large amounts of features and samples, showing excellent performance in
dealing with nonlinear relationships and high-dimensional data. SVM performs well in
classification and regression tasks, especially for nonlinear classification problems.
Neural networks are powerful models capable of learning complex patterns and
relationships, although they may require more computational resources and time for
training and tuning.

Data visualization plays a crucial role in data analysis, aiding in a more intuitive
understanding and interpretation of data. Common data visualization techniques
include confusion matrix analysis, heatmap visualization, and feature importance plots.
Confusion matrices provide a clear representation of the model's performance across
different categories, aiding in the assessment of model performance. Heatmap analysis
visually presents the relationships and patterns among data, facilitating the discovery
of hidden trends and patterns. Feature importance plots help determine which features
have the greatest impact on the model's prediction results, guiding feature selection and
model optimization.

Part-3:



Achieving real-time processing is a primary challenge in gesture detection. The
literature emphasizes the importance of optimizing video frame analysis to maintain
high frame rates, essential for smooth user experiences. Techniques such as
multithreading and efficient frame encoding are crucial. Studies have shown that
leveraging continuous frame analysis can significantly enhance performance by
predicting subsequent frames based on previous ones, thereby reducing the
computational burden (Zhang et al., 2021).

Another critical challenge is ensuring high accuracy and robustness of the
detection models. Inadequate data preprocessing and simplistic feature extraction
methods can lead to poor performance. Advanced data preprocessing techniques,
including one-hot encoding and comprehensive feature selection, are vital for
improving model accuracy (Han et al., 2020). Additionally, employing sophisticated
classification models like Random Forests can enhance prediction accuracy and
interpretability (Breiman, 2001).

Gesture detection systems have significant applications in educational tools and
interactive user interfaces. These systems can assist in teaching and learning by
providing real-time feedback on hand postures and movements. The implementation
discussed in the project highlights the integration of a gesture detection model with an
educational tool for evaluating pen-holding postures. The use of Random Forests for
classification and the optimization of frame retrieval processes were key to achieving

high accuracy and real-time performance.

5. Results& Conclusions



Part-1: Pen Grip Pose Detection based on MideaPipe

During the initial phase of the project, my responsibilities mainly focused on
proposing and explaining various ideas, writing the interface part of the requirement
document, and processing file formats. In this stage, [ actively applied the knowledge I
had acquired and drafted a comprehensive project proposal. Through in-depth
discussions with team members, I proposed multiple solutions. I also continuously
refined the requirement document using the skills I had acquired from previous courses.
Throughout this process, I continued to learn new knowledge, including delving into
the detailed processes of case analysis.

PART-2: Al-Aided Crop Recommendation Software Requirement Specification

In the second phase of our project, we transitioned from conceptualization to
implementation, meticulously analyzing the previous group's requirements and crafting
code to realize these objectives. Despite encountering challenges such as the absence
of a dataset initially, we persevered, sourcing pertinent data and delineating our
approach through the Software Design Description (SDD). Subsequent to preparatory
tasks, we delved into coding, with my responsibilities spanning data preprocessing,
model construction, and evaluation, realms entirely new to me. Through diligent
learning and application, I contributed substantively to the project's progression,
culminating in the establishment of a robust model for crop recommendation.

Navigating through this phase was undoubtedly challenging, given the novelty of
the terrain. However, by diligently acquainting myself with data analysis principles and

visualization techniques, I successfully navigated uncharted waters, contributing



substantively to the project's advancement. Furthermore, my role extended beyond
individual contributions; [ assumed a supervisory role, ensuring cohesion amongst team
members and overseeing code integration. Through diligent oversight, I ensured the
smooth operation of servers and the seamless progression of Ul development,
enhancing the project's overall quality.

PART-3: Pen Grip Pose Detection based on MideaPipe

In the third phase of the project, I returned to the gesture detection project from
the first phase, completing the entire code implementation, adding extra features,
conducting A/B testing, and preparing for the project presentation and demonstration.
Initially, we assessed the project's current progress and functionality, rating the quality
and completion status of each feature. While most functionalities had been
implemented, there were several issues that needed to be addressed, such as the lack of
a unified user interface, frequent lag during video frame reading, and low accuracy in
model predictions. By redesigning the code, employing multithreading techniques, and
improving prediction methods, we significantly enhanced the project's performance and
accuracy.

In addressing these issues, I was responsible for data preprocessing and building
the classification model. Using one-hot encoding and the random forest model, I
successfully constructed a classification model with an accuracy of 93%. Additionally,
I assisted my teammates in integrating the code, ensuring the implementation of
multithreading and continuous video frame processing, which improved the real-time

analysis capabilities. During the project testing phase, we verified the performance of



each component and prepared for the project presentation. Although the overall project
completion was high, we still identified and resolved some issues, such as adjusting the
font size and color of the result display. We also discussed the practical application of
gesture detection and potential improvement measures.

Overall, this phase not only reinforced my new knowledge in data preprocessing
and analysis but also enhanced my understanding and application of binary
classification model construction and interface integration.
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7. Appendix

Program link:

® Part-1: https://github.com/kermit0125/CPS4951 Partl

® Part-2: https://github.com/CapstoneGroup(09-1/DataSet_Analysis

® Part-3: https://github.com/kermit0125/Pen-Grip-Pose-Detection-based-on-

MideaPipe

Introduction of API:

® Pandas: Pandas is one of the primary tools in Python for data manipulation
and analysis. It provides efficient data structures and functions, especially

suitable for dealing with structured data. The core data structure in Pandas is



DataFrame, which is similar to an Excel spreadsheet but more flexible and
powerful. With Pandas, users can perform operations such as data cleaning,
transformation, analysis, and visualization. This project is mainly used for the
data cleaning part of data preprocessing.

® Scikit-learn:
Scikit-learn is a Python library for machine learning, providing a wide range
of machine learning algorithms and tools, including classification, regression,
clustering, and dimensionality reduction. It is designed to be simple and easy
to use, suitable for both beginners and experts in machine learning. Scikit-
learn comes with many classical machine learning algorithms built-in and
provides rich documentation and examples for users to learn and utilize. This
project is mainly used for the scatter plot generation part of data analysis.

® OpenCV:
OpenCV is an open-source computer vision library that provides a rich set of
image processing and computer vision algorithms for tasks such as image
processing, object detection, feature extraction, and image recognition. It
supports multiple programming languages, including C++, Python, and Java,
and is cross-platform, running on Windows, Linux, macOS, and other
operating systems. OpenCV offers a wide range of image processing and
computer vision algorithms, along with support for hardware acceleration and
parallel computing. This project is mainly used to read the camera.

® MediaPipe:



MediaPipe is an open-source framework for building machine learning-based
media processing pipelines, aimed at simplifying the development and
deployment of media processing tasks. It provides a collection of pre-trained
machine learning models and components for processing video, audio, and
image data. MediaPipe supports real-time processing and offers an easy-to-
use Python API for users to build custom media processing applications. This
project is mainly used for picture processing and skeleton prediction.
Data collection mechanism
1. First step - Determine data needs:
Determine the types, quantities, and formats of data needed for the
project. This will help you identify which datasets to download from
Kaggle and what kind of data to capture yourself.
2. Second step — Photograph or find data:
In the second part, the data set is a relevant data set retrieved on kaggle.
In the third part, the data set is shot by the project team from multiple
angles and handed over to MediaPipe to read and analyze the data table.
3. Third Step - Create the data directory structure:
Create a clear data directory structure, including folders for storing
Kaggle data and your own captured data. Add documentation or
descriptions to the directory structure describing the contents and
purpose of each dataset.

Code written by myself



Part-2:

Code of main code

import numpy as np
import pandas as pd
import joblib

predict_crop(N, P, K, temperature, humidity, ph, rainfall):

model = joblib.load('random_forest model.pkl')

encoder = joblib.load('label encoder.pkl')

data = np.array([[N, P, K, temperature, humidity, ph, rainfall]])
prediction = model.predict(data)

predicted _label = encoder.inverse_ transform(prediction)[0]

return predicted_label

main():
print("ERIA L FSHLTIEYREL ")
float(input (" LIEHHEEE: "))
"))
float(input (" LIPS E: "))
temperature = float(input ("< (FEIKEE) : "))
humidity = float(input("¥B/E (H4LE) : "))
ph = float(input("T3EM pHIE: "))
rainfall = float(input("FFM&E (ZXK) : "))

predicted label = predict crop(N, P, K, temperature, humidity, ph,
rainfall)
print (f"HIKTEYZEA N {predicted label}")

Code of Data Processing

import warnings

warnings.filterwarnings("ignore")



import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn import model selection

from sklearn import preprocessing

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix

import itertools

import joblib

df = pd.read_csv('Crop_recommendation.csv')

x = df.drop(['label’'], axis=1)

Y = df['label’]

labels = df['label'].tolist()

encode = preprocessing.LabelEncoder()
y = encode.fit_transform(Y)

print(y)

x_train, x_test, y train, y test = model selection.train_test split(x,

y, test size=0.2, random_state=10)

model = RandomForestClassifier(max_depth=5, n_estimators=100,
random_state=5)
model.fit(x_train, y train)

model.feature_importances_

feature _names = x_test.columns

feature_importances = model.feature_importances_

indices = np.argsort(feature_importances)[::-1]
plt.figure()

plt.title("Feature Importance")
plt.bar(range(len(feature_importances)), feature_importances[indices],
color="b")

plt.xticks(range(len(feature_importances)),
np.array(feature_names)[indices], color='b', rotation=90)
plt.savefig('my plot.png')




y_pred = model.predict(x_test)
y_pred_quant = model.predict proba(x_test)

confusion_matrix_model = confusion_matrix(y_test, y pred)

def cnf_matrix_plotter(cm, classes):
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)

plt.title('Confusion Matrix')

plt.colorbar()

tick _marks = np.arange(len(classes))
plt.xticks(tick _marks, classes, rotation=45)
plt.yticks(tick_marks, classes)

fmt = 'd’
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]),
range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")

.tight_layout()

.ylabel('True Label")

.xlabel('Predicted Label')

.show()
.savefig('Confusion_matrix_heat map.png')

cnf_matrix_plotter(confusion_matrix_model,

['rice', 'maize', 'chickpea', 'kidneybeans', 'pigeonpeas’, 'mothbeans', 'mung
bean', 'blackgram', 'lentil’,

'pomegranate’, 'banana’, 'mango’', 'grapes', 'watermelon’, 'muskmelon’, 'apple

', 'orange', 'papaya', 'coconut’', 'cotton', 'jute', 'coffee',"''])

joblib.dump(model, 'random_forest model.pkl"')

encoder = preprocessing.LabelEncoder()
encoder.fit(labels)




joblib.dump(encoder, 'label encoder.pkl')

Part-3:

Code of Data Processing

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model selection import train_test split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix, precision_score,
recall score, fl score, roc_curve, auc

import seaborn as sns

import joblib

df=pd.read_csv('ProcessedData.csv"')
X = df.drop('Gesture', axis=1)
y = df['Gesture']

X_train, X test, y train, y test = train_test split(X, vy,
test_size=0.2, random_state=10)

model = RandomForestClassifier(max_depth=5, n_estimators=100,
random_state=5)
model.fit(X_train, y train)

y_predict = model.predict(X test)
y_predict _proba = model.predict proba(X test)

cm = confusion_matrix(y test, y predict)
print(“Confusion Matrix:")
print(cm)

precision = precision_score(y_test, y predict)
recall = recall score(y_ test, y predict)

f1l = f1_score(y_test, y predict)
print("\nPrecision:", precision)
print("Recall:", recall)

print("F1-Score:", f1)




.figure(figsize=(8, 6))

.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False)
.xlabel('Predicted Labels"')

.ylabel('True Labels"')

.title('Confusion Matrix")

.show()

.savefig('Confusion_Matrix.png')

fpr, tpr, thresholds = roc_curve(y_ test, y predict proba[:, 1])
roc_auc = auc(fpr, tpr)

plt.figure(figsize=(8, 6))

plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area
= %0.2f)" % roc_auc)

plt.plot([@, 1], [0, 1], color="navy', 1lw=2, linestyle='--")
plt.xlim([©.0, 1.0])

plt.ylim([©.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="1lower right")

plt.show()

plt.savefig('ROC.png")

joblib.dump(model, 'random_forest model.pkl"')

Code of Data Processing

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model selection import train_test split
from sklearn.ensemble import RandomForestClassifier

from sklearn.tree import export_graphviz

from IPython.display import Image




import graphviz

df = pd.read_csv('ProcessedData.csv')

df.drop('Gesture',axis=1)
df[ 'Gesture']

X _train,X test, y train, y test = train_test split(X, y, test size=0.2,
random_state=10)

model = RandomForestClassifier(max_depth=5, n_estimators=100,
random_state=5)
model.fit(X_train, y train)

estimator = model.estimators [20]
print(estimator)

feature_names =X_train.columns
y_train_str =y train.astype('str')
y_train_str[y_train_str=="'0"'] = "Wrong'
y_train_str[y_train_str=="1'] = 'Correct’
y_train_str=y train_str.values

import os
os.environ["PATH"] += os.pathsep + 'C:/Program Files/Graphviz/bin'

dot_file = 'tree.dot’
export_graphviz(estimator, out file=dot file,
feature_names=feature_names,
class_names=y_train_str,
rounded=True, proportion=True,
label="root’,
precision=2, filled=True)

graph = graphviz.Source.from _file(dot file)

graph.render(filename="tree', format='png', view=True)
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